Neuronal cultures are a prominent experimental tool to understand complex functional organization in neuronal assemblies. However, neurons grown on flat surfaces exhibit a strongly coherent bursting behavior with limited functionality. To approach the functional richness of naturally formed neuronal circuits, here we studied neuronal networks grown on polydimethylsiloxane (PDMS) topographical patterns shaped as either parallel tracks or square valleys.
View Article and Find Full Text PDFWe propose a novel phase based analysis with the purpose of quantifying the periodic bursts of activity observed in various neuronal systems. The way bursts are intiated and propagate in a spatial network is still insufficiently characterized. In particular, we investigate here how these spatiotemporal dynamics depend on the mean connection length.
View Article and Find Full Text PDFExperimental and numerical studies have revealed that isolated populations of oscillatory neurons can spontaneously synchronize and generate periodic bursts involving the whole network. Such a behavior has notably been observed for cultured neurons in rodent's cortex or hippocampus. We show here that a sufficient condition for this network bursting is the presence of an excitatory population of oscillatory neurons which displays spike-driven adaptation.
View Article and Find Full Text PDFWe study the modifications induced in the behavior of the quorum percolation model on neural networks with Gaussian in-degree by taking into account an uncorrelated Gaussian thresholds variability. We derive a mean-field approach and show its relevance by carrying out explicit Monte Carlo simulations. It turns out that such a disorder shifts the position of the percolation transition, impacts the size of the giant cluster, and can even destroy the transition.
View Article and Find Full Text PDFIn this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2013
In this paper, we present the effects of memory decay on a bootstrap percolation model applied to random directed graphs (quorum percolation). The addition of decay was motivated by its natural occurrence in physical systems previously described by percolation theory, such as cultured neuronal networks, where decay originates from ionic leakage through the membrane of neurons and/or synaptic depression. Surprisingly, this feature alone appears to change the critical behavior of the percolation transition, where discontinuities are replaced by steep but finite slopes.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
December 2012
The effects of disorder on the critical behavior of the q-state Potts model in noninteger dimensions are studied by comparison of deterministic and random fractals sharing the same dimensions in the framework of a discrete scale invariance. We carried out intensive Monte Carlo simulations. In the case of a fractal dimension slightly smaller than two d(f) ~/= 1.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2011
We study the critical behavior of the Ising model in the case of quenched disorder constrained by fractality on random Sierpinski fractals with a Hausdorff dimension d(f) is approximately equal to 1.8928. This is a first attempt to study a situation between the borderline cases of deterministic self-similarity and quenched randomness.
View Article and Find Full Text PDF