Mosquitoes are vectors for emerging and re-emerging infectious viral diseases of humans, livestock and other animals. In addition to these arthropod-borne (arbo)viruses, mosquitoes are host to an array of insect-specific viruses, collectively referred to as the mosquito virome. Mapping the mosquito virome and understanding if and how its composition modulates arbovirus transmission is critical to understand arboviral disease emergence and outbreak dynamics.
View Article and Find Full Text PDFBackground: Glass membrane feeders are used in malaria research for artificial blood feeding. This study investigates the use of Hemotek membrane feeders as a standardized alternative feeding system.
Methods: Hemotek feeders were compared with glass feeders by assessing mosquito feeding rate, imbibed blood meal volume and Plasmodium falciparum infection intensity on mosquito guts.
Aedes aegypti mosquitoes are responsible for the transmission of arthropod-borne (arbo)viruses including dengue and chikungunya virus (CHIKV) but in contrast to human hosts, arbovirus-infected mosquitoes are able to efficiently control virus replication to sub-pathological levels. Yet, our knowledge of the molecular interactions of arboviruses with their mosquito hosts is incomplete. Here, we aimed to identify and characterize novel host genes that control arbovirus replication in Aedes mosquitoes.
View Article and Find Full Text PDFWe describe a protocol for single-cell RNA sequencing of SARS-CoV-2-infected human induced pluripotent stem cell (iPSC)-derived kidney organoids. After inoculation of kidney organoids with virus, we use mechanical and enzymatic disruption to obtain single cell suspensions. Next, we process the organoid-derived cells into sequencing-ready SARS-CoV-2-targeted libraries.
View Article and Find Full Text PDFIn insects, PIWI-interacting (pi)RNAs fulfill versatile regulatory functions inside and outside the germline, including posttranscriptional repression of transposable elements and regulation of gene expression. Canonically, piRNAs act-and have been studied-as a conglomerate of several thousand sequences that cooperatively silence target RNAs. Interestingly, however, an increasing number of studies have demonstrated that individual piRNAs can have profound biological activity as a unique piRNA sequence.
View Article and Find Full Text PDFAfter decades of being considered non-pathogenic, Zika virus (ZIKV) emerged as an important threat to human health during the epidemic of 2015-2016. ZIKV infections are usually asymptomatic, but can cause Guillain-Barré syndrome in adults and microcephaly in newborns. As there are currently no approved antiviral drugs against ZIKV, we tested anti-ZIKV activity of compounds from the NIH Clinical Collection for which we previously showed antiviral activity against the related dengue virus.
View Article and Find Full Text PDFKidney failure is frequently observed during and after COVID-19, but it remains elusive whether this is a direct effect of the virus. Here, we report that SARS-CoV-2 directly infects kidney cells and is associated with increased tubule-interstitial kidney fibrosis in patient autopsy samples. To study direct effects of the virus on the kidney independent of systemic effects of COVID-19, we infected human-induced pluripotent stem-cell-derived kidney organoids with SARS-CoV-2.
View Article and Find Full Text PDFIn the germline of animals, PIWI interacting (pi)RNAs protect the genome against the detrimental effects of transposon mobilization. In Drosophila, piRNA-mediated cleavage of transposon RNA triggers the production of responder piRNAs via ping-pong amplification. Responder piRNA 3' end formation by the nuclease Zucchini is coupled to the production of downstream trailer piRNAs, expanding the repertoire of transposon piRNA sequences.
View Article and Find Full Text PDFPIWI-interacting (pi)RNAs are small silencing RNAs that are crucial for the defense against transposable elements in germline tissues of animals. In mosquitoes, the piRNA pathway also contributes to gene regulation in somatic tissues, illustrating additional roles for piRNAs and PIWI proteins besides transposon repression. Here, we identify a highly abundant endogenous piRNA (propiR1) that associates with both Piwi4 and Piwi5.
View Article and Find Full Text PDFSmall RNAs are crucial for the regulation of basic cellular processes and protection against viruses and transposons in mosquitoes. Rozen-Gagnon et al. established CLIP (cross-linking and immunoprecipitation) for Argonaute proteins in Aedes aegypti.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a new human pathogen in late 2019 and it has infected over 100 million people in less than a year. There is a clear need for effective antiviral drugs to complement current preventive measures, including vaccines. In this study, we demonstrate that berberine and obatoclax, two broad-spectrum antiviral compounds, are effective against multiple isolates of SARS-CoV-2.
View Article and Find Full Text PDFThe genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways.
View Article and Find Full Text PDFHorizontal gene transfer from viruses to eukaryotic cells is a pervasive phenomenon. Somatic viral integrations are linked to persistent viral infection whereas integrations into germline cells are maintained in host genomes by vertical transmission and may be co-opted for host functions. In the arboviral vector Aedes aegypti, an endogenous viral element from a nonretroviral RNA virus (nrEVE) was shown to produce PIWI-interacting RNAs (piRNAs) to limit infection with a cognate virus.
View Article and Find Full Text PDFBackground: The Asian tiger mosquito Aedes albopictus is globally expanding and has become the main vector for human arboviruses in Europe. With limited antiviral drugs and vaccines available, vector control is the primary approach to prevent mosquito-borne diseases. A reliable and accurate DNA sequence of the Ae.
View Article and Find Full Text PDFThe phenotypic manifestations of disease induced by viruses and subviral infectious entities are the result of complex molecular interactions between host and viral factors. The viral determinants of the diseased phenotype have traditionally been sought at the level of structural or non-structural proteins. However, the discovery of RNA silencing mechanisms has led to speculations that determinants of the diseased phenotype are caused by viral nucleic acid sequences in addition to proteins.
View Article and Find Full Text PDFEndogenous viral elements (EVEs) are viral sequences integrated in host genomes. A large number of non-retroviral EVEs was recently detected in Aedes mosquito genomes, leading to the hypothesis that mosquito EVEs may control exogenous infections by closely related viruses. Here, we experimentally investigated the role of an EVE naturally found in Aedes aegypti populations and derived from the widespread insect-specific virus, cell-fusing agent virus (CFAV).
View Article and Find Full Text PDFTandem repeat elements such as the diverse class of satellite repeats occupy large parts of eukaryotic chromosomes, mostly at centromeric, pericentromeric, telomeric and subtelomeric regions. However, some elements are located in euchromatic regions throughout the genome and have been hypothesized to regulate gene expression in cis by modulating local chromatin structure, or in trans via transcripts derived from the repeats. Here we show that a satellite repeat in the mosquito Aedes aegypti promotes sequence-specific gene silencing via the expression of two PIWI-interacting RNAs (piRNAs).
View Article and Find Full Text PDFCoevolution of viruses and their hosts may lead to viral strategies to avoid, evade, or suppress antiviral immunity. An example is antiviral RNA interference (RNAi) in insects: the host RNAi machinery processes viral double-stranded RNA into small interfering RNAs (siRNAs) to suppress viral replication, whereas insect viruses encode suppressors of RNAi, many of which inhibit viral small interfering RNA (vsiRNA) production. Yet, many studies have analyzed viral RNAi suppressors in heterologous systems, due to the lack of experimental systems to manipulate the viral genome of interest, raising questions about in vivo functions of RNAi suppressors.
View Article and Find Full Text PDFThe RNA interference (RNAi) pathway is a potent antiviral defense mechanism in plants and invertebrates, in response to which viruses evolved suppressors of RNAi. In mammals, the first line of defense is mediated by the type I interferon system (IFN); however, the degree to which RNAi contributes to antiviral defense is still not completely understood. Recent work suggests that antiviral RNAi is active in undifferentiated stem cells and that antiviral RNAi can be uncovered in differentiated cells in which the IFN system is inactive or in infections with viruses lacking putative viral suppressors of RNAi.
View Article and Find Full Text PDFSmall RNA mediated responses are essential for antiviral defence in mosquitoes, however, they appear to differ per virus-vector combination. To further investigate the diversity of small RNA responses against viruses in mosquitoes, we applied a small RNA deep sequencing approach on five mosquito cell lines: CT cells, U4.4 and C6/36 cells, Aag2 cells (cleared from cell fusing agent virus and Culex Y virus (CYV) by repetitive dsRNA transfections) and AP-61 cells.
View Article and Find Full Text PDFCommensal bacteria that colonize the midgut of Aedes aegypti mosquitoes can influence the transmission of arthropod-borne viruses. In this issue of Cell Host & Microbe, Wu et al. (2019) show that Serratia marcescens bacteria secrete enhancin proteins that cleave membrane-bound mucins, thereby facilitating dengue virus infection of midgut epithelial cells.
View Article and Find Full Text PDFPIWI-interacting RNAs (piRNAs) comprise a class of small RNAs best known for suppressing transposable elements in germline tissues. The vector mosquito Aedes aegypti encodes seven PIWI genes, four of which are somatically expressed. This somatic piRNA pathway generates piRNAs from viral RNA during infection with cytoplasmic RNA viruses through ping-pong amplification by the PIWI proteins Ago3 and Piwi5.
View Article and Find Full Text PDF