Publications by authors named "Pascal M Lanctot"

Glycans cover all cellular surfaces and, not surprisingly, are involved in many facets of stem cell biology and technology. For instance, coaxing stem cells to either proliferate or differentiate into the specific cell types needed for transplantation requires intricate glycan-dependent modulation of signalling molecules such as FGF-2, Wnt, and Notch. Moreover, owing to their prominent cell-surface localization and lineage-specific signatures, glycan epitopes such as the stage-specific embryonic antigens (Lewis X/SSEA-1, SSEA3-4) and tumor-rejection antigens (TRA1-60, 1-81) are ideally suited for identifying and isolating specific cell types from heterogeneous populations.

View Article and Find Full Text PDF

1. Nitric oxide (NO) is known to affect the properties of various proteins via the S-nitrosylation of cysteine residues. This study evaluated the direct effects of the NO donor sodium nitroprusside (SNP) on the pharmacological properties of the AT1 receptor for angiotensin II expressed in HEK-293 cells.

View Article and Find Full Text PDF

Most G protein-coupled receptors (GPCRs) are N-glycosylated proteins but the role of this post-translational modification in GPCR biosynthesis has not been extensively studied. We previously showed that the non-glycosylated AT(1) receptor is inefficiently expressed at the cell surface. In this study, we addressed whether AT(1) interacts with elements of the ER-based quality control processes.

View Article and Find Full Text PDF

GPCRs (G-protein-coupled receptors) are preferentially N-glycosylated on ECL2 (extracellular loop 2). We previously showed that N-glycosylation of ECL2 was crucial for cell-surface expression of the hAT1 receptor (human angiotensin II receptor subtype 1). Here, we ask whether positioning of the N-glycosylation sites within the various ECLs of the receptor is a vital determinant in the functional expression of hAT(1) receptor at the cell surface.

View Article and Find Full Text PDF

Asn111, localized in the third transmembrane domain of the AT1 receptor for angiotensin II, plays a critical role in stabilizing the inactive conformation of the receptor. We evaluated the functional and G protein-coupling properties of mutant AT1 receptors in which Asn111 was substituted with smaller (Ala or Gly) or larger residues (Gln or Trp). All four mutants were expressed at high levels in COS-7 cells and, except for N111W-AT1, recognized 125I-Ang II with high affinities comparable to that of the wild-type AT1 receptor.

View Article and Find Full Text PDF

The type 1 receptor for angiotensin II (AT(1)) is a member of the G protein-coupled receptor family. The presence of a caveolin-binding-like motif (phiXphiXXXXphiXXphi where phi is an aromatic residue) within the cytoplasmic tail of the AT(1) receptor suggests an implication for caveolae in the functionality of this receptor. We constructed a mutant AT(1) receptor where each of the aromatic residues in the caveolin-binding-like motif were replaced by alanine (AT(1)-YFFY/A).

View Article and Find Full Text PDF