Publications by authors named "Pascal Kusters"

Background: Atherosclerosis is the underlying cause of many cardiovascular diseases, such as myocardial infarction or stroke. B cells, and their production of pro- and anti-atherogenic antibodies, play an important role in atherosclerosis. In B cells, TRAF2 and NCK-interacting Kinase (TNIK), a germinal center kinase, was shown to bind to TNF-receptor associated factor 6 (TRAF6), and to be involved in JNK and NF-κB signaling in human B cells, a pathway associated with antibody production.

View Article and Find Full Text PDF

Background: Immunotherapy has revolutionized cancer treatment. However, immune checkpoint inhibitors (ICIs) that target PD-1 (programmed cell death protein-1) and/or CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) are commonly associated with acute immune-related adverse events. Accumulating evidence also suggests that ICIs aggravate existing inflammatory diseases.

View Article and Find Full Text PDF

Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets.

View Article and Find Full Text PDF

T cell-driven inflammation plays a critical role in the initiation and progression of atherosclerosis. The co-inhibitory protein Cytotoxic T-Lymphocyte Associated protein (CTLA) 4 is an important negative regulator of T cell activation. Here, we studied the effects of the antibody-mediated inhibition of CTLA4 on experimental atherosclerosis by treating 6-8-week-old Ldlr mice, fed a 0.

View Article and Find Full Text PDF

Aims: GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD).

Methods And Results: GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2.

View Article and Find Full Text PDF

Chronic inflammation drives the development of atherosclerosis. Despite optimal treatment of classical cardiovascular risk factors, a substantial portion of the population has elevated inflammatory biomarkers and develops atherosclerosis-related complications, indicating that a residual inflammatory risk drives atherosclerotic cardiovascular disease in these patients. Additional anti-inflammatory therapeutic strategies are therefore required.

View Article and Find Full Text PDF

Atherosclerosis is a progressive vascular disease triggered by interplay between abnormal shear stress and endothelial lipid retention. A combination of these and, potentially, other factors leads to a chronic inflammatory response in the vessel wall, which is thought to be responsible for disease progression characterized by a buildup of atherosclerotic plaques. Yet molecular events responsible for maintenance of plaque inflammation and plaque growth have not been fully defined.

View Article and Find Full Text PDF

The costimulatory CD40L-CD40 dyad plays a major role in multiple sclerosis (MS). CD40 is highly expressed on MHCII B cells, dendritic cells and macrophages in human MS lesions. Here we investigated the role of the CD40 downstream signaling intermediates TNF receptor-associated factor 2 (TRAF2) and TRAF6 in MHCII cells in experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis.

Methods And Results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area.

View Article and Find Full Text PDF

Objective: The mechanisms underlying formation of arterial aneurysms remain incompletely understood. Because inflammation is a common feature during the progressive degeneration of the aortic wall, we studied the role of the costimulatory molecule CD40L, a major driver of inflammation, in aneurysm formation.

Approach And Results: Transcriptomics data obtained from human abdominal aortic aneurysms and normal aortas revealed increased abundance of both CD40L and CD40 in media of thrombus-free and thrombus-covered human abdominal aortic aneurysms samples.

View Article and Find Full Text PDF

Background: Disrupting the costimulatory CD40-CD40L dyad reduces atherosclerosis, but can result in immune suppression. The authors recently identified small molecule inhibitors that block the interaction between CD40 and tumor necrosis factor receptor-associated factor (TRAF) 6 (TRAF-STOPs), while leaving CD40-TRAF2/3/5 interactions intact, thereby preserving CD40-mediated immunity.

Objectives: This study evaluates the potential of TRAF-STOP treatment in atherosclerosis.

View Article and Find Full Text PDF

In the past decades, the inflammatory nature of atherosclerosis has been well-recognized and despite the development of therapeutic strategies targeted at its classical risk factors such as dyslipidemia and hypertension, atherosclerosis remains a major cause of morbidity and mortality. Additional strategies targeting the chronic inflammatory pathways underlying the development of atherosclerosis are therefore required. Interactions between different immune cells result in the secretion of inflammatory mediators, such as cytokines and chemokines, and fuel atherogenesis.

View Article and Find Full Text PDF

The costimulatory molecule CD40 is a major driver of atherosclerosis. It is expressed on a wide variety of cell types, including mature dendritic cells (DCs), and is required for optimal T-cell activation and expansion. It remains undetermined whether and how CD40 on DCs impacts the pathogenesis of atherosclerosis.

View Article and Find Full Text PDF

Brown adipose tissue (BAT) activation and white adipose tissue (WAT) beiging can increase energy expenditure and have the potential to reduce obesity and associated diseases. The immune system is a potential target in mediating brown and beige adipocyte activation. Type 2 and anti-inflammatory immune cells contribute to metabolic homeostasis within lean WAT, with a prominent role for eosinophils and interleukin (IL)-4-induced anti-inflammatory macrophages.

View Article and Find Full Text PDF

Background: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation.

View Article and Find Full Text PDF

Background: The CXCL12/CXCR4 chemokine ligand/receptor axis controls (progenitor) cell homeostasis and trafficking. So far, an atheroprotective role of CXCL12/CXCR4 has only been implied through pharmacological intervention, in particular, because the somatic deletion of the gene in mice is embryonically lethal. Moreover, cell-specific effects of CXCR4 in the arterial wall and underlying mechanisms remain elusive, prompting us to investigate the relevance of CXCR4 in vascular cell types for atheroprotection.

View Article and Find Full Text PDF

Obesity is associated with chronic low-grade inflammation, characterized by leukocytosis and inflammation in the adipose tissue. Continuous activation of the immune system is a stressor for hematopoietic stem and progenitor cells (HSPCs) in the bone marrow (BM). Here we studied how diet-induced obesity (DIO) affects HSPC population dynamics in the BM.

View Article and Find Full Text PDF

Atherosclerosis is an inflammatory disease of the vessel wall characterized by activation of the innate immune system, with macrophages as the main players, as well as the adaptive immune system, characterized by a Th1-dominant immune response. Cytokines play a major role in the initiation and regulation of inflammation. In recent years, many studies have investigated the role of these molecules in experimental models of atherosclerosis.

View Article and Find Full Text PDF

In the past two decades, numerous experimental and clinical studies have established the importance of inflammation and immunity in the development of obesity and its metabolic complications, including insulin resistance and type 2 diabetes mellitus. In this context, T cells orchestrate inflammatory processes in metabolic organs, such as the adipose tissue (AT) and liver, thereby mediating obesity-related metabolic deterioration. Costimulatory molecules, which are present on antigen-presenting cells and naïve T cells in the AT, are known to mediate the crosstalk between the adaptive and innate immune system and to direct T-cell responses in inflammation.

View Article and Find Full Text PDF

The immune system plays an instrumental role in obesity and insulin resistance. Here, we unravel the role of the costimulatory molecule CD40 and its signaling intermediates, TNF receptor-associated factors (TRAFs), in diet-induced obesity (DIO). Although not exhibiting increased weight gain, male CD40(-/-) mice in DIO displayed worsened insulin resistance, compared with wild-type mice.

View Article and Find Full Text PDF

Numerous epidemiological studies have consistently demonstrated the strong association between type 2 diabetes mellitus (T2DM) and an increased risk to develop cardiovascular disease. The pathogenesis of T2DM and its complications are characterized by pancreatic, adipose tissue and vascular inflammation. CD40 and CD40L, members of the tumour necrosis factor (receptor) TNF(R) family, are well known for their role in immunity and inflammation.

View Article and Find Full Text PDF