The present work describes a new computer-assisted image analysis method for the rapid, simple, objective and reproducible quantification of actively discharged fungal spores which can serve as a manual for laboratories working in this context. The method can be used with conventional laboratory equipment by using bright field microscopes, standard scanners and the open-source software ImageJ. Compared to other conidia quantification methods by computer-assisted image analysis, the presented method bears a higher potential to be applied for large-scale sample quantities.
View Article and Find Full Text PDFTicks, like Ixodes ricinus, have negative impacts on human and animal health in Germany and worldwide, with almost no specific scientifically proven biological control agent commercially available. Biological control agents containing entomopathogenic fungi present many advantages over chemical acaricides but usually high doses of aerial conidia (10-10 conidia/ha) are required to control arthropod pests in the field. A suitable formulation containing nutrients not only makes sensitive blastospores applicable but also functions as a microfermenter to multiply the biomass and thus significantly reduce the required application dosage.
View Article and Find Full Text PDFBackground: Wireworms (Coleoptera: Elateridae) are major insect pests of worldwide relevance. Owing to the progressive phasing-out of chemical insecticides, there is great demand for innovative control options. This study reports on the development of an attract-and-kill co-formulation based on Ca-alginate beads, which release CO and contain neem extract as a bioinsecticidal compound.
View Article and Find Full Text PDFCO is known as a major attractant for many arthropod pests which can be exploited for pest control within novel attract-and-kill strategies. This study reports on the development of a slow-release system for CO based on calcium alginate beads containing granular corn starch, amyloglucosidase and Saccharomyces cerevisiae. Our aim was to evaluate the conditions which influence the CO release and to clarify the biochemical reactions taking place within the beads.
View Article and Find Full Text PDFCalcium chloride (CC) is the most common cross-linker for the encapsulation of biocontrol microorganisms in alginate beads. The aim of this study was to evaluate if calcium gluconate (CG) can replace CC as cross-linker and at the same time improve viability after drying and rehydration, hygroscopic properties, shelf life and nutrient supply. Hence, the biocontrol fungi Metarhizium brunneum and Saccharomyces cerevisiae were encapsulated in Ca-alginate beads supplemented with starch.
View Article and Find Full Text PDF