Tuberculosis is a serious public health problem worldwide. The search for new antibiotics has become a priority, especially with the emergence of resistant strains. A new family of imidazoquinoline derivatives, structurally analogous to triazolophthalazines, which had previously shown good antituberculosis activity, were designed to inhibit InhA, an essential enzyme for survival.
View Article and Find Full Text PDFIntroduction: Alterations in the composition and function of the gut microbiome have been reported in idiopathic epilepsy (IE), however, interactions of gut microbes with the enteric nervous system (ENS) in this context require further study. This pilot study examined how gastrointestinal microbiota (GIM), their metabolites, and nutrients contained in intestinal contents communicate with the ENS.
Methods: Fecal supernatants (FS) from healthy dogs and dogs with IE, including drug-naïve, phenobarbital (PB) responsive, and PB non-responsive dogs, were applied to cultured myenteric neurons to test their activation using voltage-sensitive dye neuroimaging.
Mosquitoes are significant vectors of various pathogens. Unlike vertebrates, insects rely solely on innate immunity. Hemocytes play a crucial role in the cellular part of the innate immune system.
View Article and Find Full Text PDFTuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) affects 10 million people each year and the emergence of resistant TB augurs for a growing incidence. In the last 60 years, only three new drugs were approved for TB treatment, for which resistances are already emerging. Therefore, there is a crucial need for new chemotherapeutic agents capable of eradicating TB.
View Article and Find Full Text PDFThe mesoporous metal-organic framework Cr-MIL-101-NH (MOF1) has been used to encapsulate, by a simple impregnation method, large amounts of copper sulfate. The resulting loaded material, Cu@MOF1, was successfully employed to slowly release copper(ii) into an appropriate reaction medium in which the reducing agent sodium ascorbate reduces copper(ii) to copper(i), thus allowing the well-known copper(i)-catalyzed alkyne-azide cycloaddition (CuAAC) "click" reaction to proceed in the absence of potentially high local copper(i) concentrations. The use of a MOF-based controlled copper release system such as Cu@MOF1 may be relevant for copper(i)-catalyzed reactions having substrates that could be degraded by potentially high local concentrations of copper(i).
View Article and Find Full Text PDFInfectious gastrointestinal diseases are frequently caused by toxins secreted by pathogens which may impair physiological functions of the intestines, for instance by cholera toxin or by heat-labile enterotoxin. To obtain a functional model of the human intestinal epithelium for studying toxin-induced disease mechanisms, differentiated enterocyte-like Caco-2 cells were co-cultured with goblet cell-like HT29-MTX cells. These co-cultures formed a functional epithelial barrier, as characterized by a high electrical resistance and the presence of physiological intestinal properties such as glucose transport and chloride secretion which could be demonstrated electrophysiologically and by measuring protein expression.
View Article and Find Full Text PDFGastrointestinal infectious diseases remain an important issue for human and animal health. Investigations on gastrointestinal infectious diseases are classically performed in laboratory animals leading to the problem that species-specific models are scarcely available, especially when it comes to farm animals. The 3R principles of Russel and Burch were achieved using intestinal organoids of porcine jejunum.
View Article and Find Full Text PDFThe protein O6-methylguanine-DNA methyltransferase (MGMT) is able to repair the mutagenic O6-methylguanine (O6-MeG) adduct back to guanine. In this context, it may protect against colorectal cancer formation associated with N-nitroso compounds. Such compounds may be endogenously formed by nitrosylation of amino acids, which can give rise to mutagenic O6-MeG and O6-carboxymethylguanine (O6-CMG) adducts.
View Article and Find Full Text PDFTriclosan and isoniazid are known antitubercular compounds that have proven to be also active against parasites. On these grounds, a collection of 37 diverse 1,2,3-triazoles based on the antitubercular molecules triclosan and 5-octyl-2-phenoxyphenol (8PP) were designed in search of novel structures with leishmanicidal activity and prepared using different alkynes and azides. The 37 compounds were assayed against , the etiological agent of leishmaniasis, yielding some analogs with activity at micromolar concentrations and against H37Rv resulting in scarce active compounds with an MIC of 20 μM.
View Article and Find Full Text PDFA zinc metal-organic framework, namely poly[bis-(,-di-ethyl-formamide)(μ-naphthalene-2,6-di-carboxyl-ato)(μ-naphthalene-2,6-di-carboxyl-ato)dizinc(II)], [Zn(CHO)(CHNO)] , built from windmill-type secondary building units and forming zigzag shaped two-dimensional stacked layers, has been solvothermally synthesized from naphthalene-2,6-di-carb-oxy-lic acid and zinc(II) acetate as the metal source in ,-di-ethyl-formamide containing small amounts of formic acid.
View Article and Find Full Text PDFBisubstrate-type compound Lys-CoA has been shown to inhibit the p300 histone acetyl transferase activity efficiently and may constitute a lead compound for a novel class of anticancer therapeutics. Based on this strategy, we synthesized a series of CoA derivatives and evaluated these molecules for their activity as p300 histone acetyltransferases inhibitor. The best activity was obtained with compound 3 bearing a C-5 spacing linker that connects the CoA moiety to a tert-butyloxycarbonyl (Boc) group.
View Article and Find Full Text PDFWith the aim of developing a novel superoxide dismutase (SOD) activity assay, a series of polymethinium salts (streptocyanines) were prepared and studied for their ability to be reduced by superoxide radical anion generated either from the pyrogallol autoxidation or by the xanthine oxidase-catalyzed oxidation of xanthine. The nonacarbon chain streptocyanine 9Cl(NEt(2))(2) was found to be relatively stable in neutral buffered aqueous solutions, to be reduced at a significant rate by superoxide, and addition of iron-dependent superoxide dismutase (Fe-SOD) prevented its bleaching, thus constituting a good candidate as a possible superoxide indicator in a spectrophotometric SOD assay. The values found to be optimal for a SOD assay were defined as pH 7.
View Article and Find Full Text PDFProteins
October 2009
Superoxide dismutases (SODs) are a crucial class of enzymes in the combat against intracellular free radical damage. They eliminate superoxide radicals by converting them into hydrogen peroxide and oxygen. In spite of their very different life cycles and infection strategies, the human parasites Plasmodium falciparum, Trypanosoma cruzi and Trypanosoma brucei are known to be sensitive to oxidative stress.
View Article and Find Full Text PDFThe preparation of a phosphorylated alpha-dicarbonyl compound designed to specifically react with arginine residues of enzymes accepting phosphorylated compounds as effectors is reported, and shown to inhibit rabbit muscle aldolase in a time-dependent and irreversible manner. This irreversible inhibition occured in a buffer devoid of borate ions, suggesting that the presence of the phosphate moiety contributes in the stabilization of the adduct formed with arginine residues. Under the same conditions, the metalloenzyme iron superoxide dismutase, in which an arginine is known to be critical for the catalytic function, is not significantly inhibited.
View Article and Find Full Text PDFThe preparation of a series of novel water soluble cationic lipid derivatives possessing phosphonate ester groups linked to the para-position of N-methyl pyridinium moieties and bearing either identical or different alkyl chains is reported. The obtained phospholipids were tested for transfection efficiency into three different mammalian cell lines alone and in conjunction with diphytanoylphosphatidylethanolamine (DiPPE) or dioleylphosphatidylethanolamine (DOPE), using an assay adapted for 96-well microplates based on the detection of a colorimetric change caused by the production of a chromogen induced by expressed secreted human placental alkaline phosphatase. In our conditions, the highest transfection activities of cells HEK293 and hard-to-transfect cell lines B16 and CHO were achieved with a 4-phosphonobutylpyridinium compound used at 1:5, 1:10 or 3:6 DNA/lipid ratio bearing two myristyl chains in the presence of the fusogenic helper lipid DiPPE.
View Article and Find Full Text PDFThe preparation and characterization of two vitamin E analogs-sydnonimine conjugates, delta-tocopheryloxycarbonyl-3-morpholinosydnonimine (2) and troloxoxycarbonyl-3-morpholinosydnonimine (3), in which the hydroxyl group of the tocopheryl moieties is linked via an enzymatically cleavable urethane group to the sydnone moiety is described. In the presence of porcine liver esterase, these tocopheryl-sydnonimine conjugates generated the expected antioxidant moieties, i.e.
View Article and Find Full Text PDFIn vitro evaluation of a chemical library of synthetic compounds using two consecutive assays has led to the discovery of fifteen compounds which have the ability to inhibit recombinant Plasmodium falciparum iron superoxide dismutase (PfSOD), suggested as a highly selective target for design of antiparasitic drugs. A large number of compounds were in fact excluded, because they were found to significantly interfere with the components of the assays, thus outlining the drawbacks relative to the use of standard SOD-assays for the research of compounds targeting SODs. The best of the selected compounds showed significant antimalarial activities against two strains of P.
View Article and Find Full Text PDFA series of catechol derivatives were synthesised and tested for their ability to inactivate the iron-containing superoxide dismutase (Fe-SOD) from Escherichia coli and the bovine erythrocytes Cu/Zn-SOD. Incubation of catechols with Fe- or Cu/Zn SODs resulted in a time-dependent loss of enzyme activity with highly selective inhibition for the iron-dependent enzyme. Catechol-induced inactivation of SODs was correlated with the auto-oxidation of the catechol compounds to their corresponding ortho-quinone derivatives, which was found to be non-dependent on the presence of enzymes.
View Article and Find Full Text PDF