Publications by authors named "Pascal Hebbeker"

This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble.

View Article and Find Full Text PDF

The influence of spacer chains on the intramolecular complexation in star-shaped heteroarm (miktoarm) polymers is investigated. To overcome the mutual attraction of different polymeric components present in a miktoarm star with different homopolymeric arms, spacer chains of different length are attached to the core of the star at three different positions. In most of the investigated cases, this leads to diblock copolymer arms within the miktoarm star.

View Article and Find Full Text PDF

Segregation is a well-known principle for micellization, as solvophobic components try to minimize interactions with other entities (such as solvent) by self-assembly. An opposite principle is based on complexation (or coacervation), leading to the coassembly/association of different components. Most cases in the literature rely on only one of these modes, though the classical micellization scheme (such as spherical micelles, wormlike micelles, and vesicles) can be enriched by a subtle balance of segregation and complexation.

View Article and Find Full Text PDF

Compartmentalization in soft matter is important for segregating and coordinating chemical reactions, sequestering (re)active components, and integrating multifunctionality. Advances depend crucially on quantitative 3D visualization in situ with high spatiotemporal resolution. Here, we show the direct visualization of different compartments within adaptive microgels using a combination of in situ electron and super-resolved fluorescence microscopy.

View Article and Find Full Text PDF

An adaptive algorithm optimizing single-particle translational displacement parameters in Metropolis Monte Carlo simulations is presented. The optimization is based on maximizing the mean square displacement of a trial move. It is shown that a large mean square displacement is strongly correlated with a high precision of average potential energy.

View Article and Find Full Text PDF

Binary diblock copolymers and corresponding ternary miktoarm stars are studied at oil-water interfaces. All polymers contain oil-soluble poly(propylene oxide) PPO, water-soluble poly(dimethylaminoethyl methacrylate) PDMAEMA and/or poly(ethylene oxide) PEO. The features of their Langmuir compression isotherms are well related to the ones of the corresponding homopolymers.

View Article and Find Full Text PDF