Objectives: The shape is commonly used to describe the objects. State-of-the-art algorithms in medical imaging are predominantly diverging from computer vision, where voxel grids, meshes, point clouds, and implicit surface models are used. This is seen from the growing popularity of ShapeNet (51,300 models) and Princeton ModelNet (127,915 models).
View Article and Find Full Text PDFPulmonary diseases rank prominently among the principal causes of death worldwide. Curing them will require, among other things, a better understanding of the complex 3D tree-shaped structures within the pulmonary system, such as airways, arteries, and veins. Traditional approaches using high-resolution image stacks and standard CNNs on dense voxel grids face challenges in computational efficiency, limited resolution, local context, and inadequate preservation of shape topology.
View Article and Find Full Text PDFGeometric Deep Learning has recently made striking progress with the advent of continuous deep implicit fields. They allow for detailed modeling of watertight surfaces of arbitrary topology while not relying on a 3D euclidean grid, resulting in a learnable parameterization that is unlimited in resolution. Unfortunately, these methods are often unsuitable for applications that require an explicit mesh-based surface representation because converting an implicit field to such a representation relies on the Marching Cubes algorithm, which cannot be differentiated with respect to the underlying implicit field.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
November 2024
A recent trend in Non-Rigid Structure-from-Motion (NRSfM) is to express local, differential constraints between pairs of images, from which the surface normal at any point can be obtained by solving a system of polynomial equations. While this approach is more successful than its counterparts relying on global constraints, the resulting methods face two main problems: First, most of the equation systems they formulate are of high degree and must be solved using computationally expensive polynomial solvers. Some methods use polynomial reduction strategies to simplify the system, but this adds some phantom solutions.
View Article and Find Full Text PDFBigNeuron is an open community bench-testing platform with the goal of setting open standards for accurate and fast automatic neuron tracing. We gathered a diverse set of image volumes across several species that is representative of the data obtained in many neuroscience laboratories interested in neuron tracing. Here, we report generated gold standard manual annotations for a subset of the available imaging datasets and quantified tracing quality for 35 automatic tracing algorithms.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
August 2023
IEEE Trans Pattern Anal Mach Intell
May 2023
In this article we propose an unsupervised feature extraction method to capture temporal information on monocular videos, where we detect and encode subject of interest in each frame and leverage contrastive self-supervised (CSS) learning to extract rich latent vectors. Instead of simply treating the latent features of nearby frames as positive pairs and those of temporally-distant ones as negative pairs as in other CSS approaches, we explicitly disentangle each latent vector into a time-variant component and a time-invariant one. We then show that applying contrastive loss only to the time-variant features and encouraging a gradual transition on them between nearby and away frames while also reconstructing the input, extract rich temporal features, well-suited for human pose estimation.
View Article and Find Full Text PDFIEEE Trans Med Imaging
December 2022
Curvilinear structures frequently appear in microscopy imaging as the object of interest. Crystallographic defects, i.e dislocations, are one of the curvilinear structures that have been repeatedly investigated under transmission electron microscopy (TEM) and their 3D structural information is of great importance for understanding the properties of materials.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
December 2022
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibitively expensive, we introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera. At the heart of our approach lies the observation that object segmentation and background reconstruction are linked tasks, and that, for structured scenes, background regions can be re-synthesized from their surroundings, whereas regions depicting the moving object cannot.
View Article and Find Full Text PDFModern methods for counting people in crowded scenes rely on deep networks to estimate people densities in individual images. As such, only very few take advantage of temporal consistency in video sequences, and those that do only impose weak smoothness constraints across consecutive frames. In this paper, we advocate estimating people flows across image locations between consecutive images and inferring the people densities from these flows instead of directly regressing them.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2022
We propose a novel, connectivity-oriented loss function for training deep convolutional networks to reconstruct network-like structures, like roads and irrigation canals, from aerial images. The main idea behind our loss is to express the connectivity of roads, or canals, in terms of disconnections that they create between background regions of the image. In simple terms, a gap in the predicted road causes two background regions, that lie on the opposite sides of a ground truth road, to touch in prediction.
View Article and Find Full Text PDFEigendecomposition of symmetric matrices is at the heart of many computer vision algorithms. However, the derivatives of the eigenvectors tend to be numerically unstable, whether using the SVD to compute them analytically or using the Power Iteration (PI) method to approximate them. This instability arises in the presence of eigenvalues that are close to each other.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
January 2022
In this paper, we tackle the problem of static 3D cloth draping on virtual human bodies. We introduce a two-stream deep network model that produces a visually plausible draping of a template cloth on virtual 3D bodies by extracting features from both the body and garment shapes. Our network learns to mimic a physics-based simulation (PBS) method while requiring two orders of magnitude less computation time.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
September 2021
Many classical Computer Vision problems, such as essential matrix computation and pose estimation from 3D to 2D correspondences, can be tackled by solving a linear least-square problem, which can be done by finding the eigenvector corresponding to the smallest, or zero, eigenvalue of a matrix representing a linear system. Incorporating this in deep learning frameworks would allow us to explicitly encode known notions of geometry, instead of having the network implicitly learn them from data. However, performing eigendecomposition within a network requires the ability to differentiate this operation.
View Article and Find Full Text PDFWe present an Unsupervised Domain Adaptation strategy to compensate for domain shifts on Electron Microscopy volumes. Our method aggregates visual correspondences-motifs that are visually similar across different acquisitions-to infer changes on the parameters of pretrained models, and enable them to operate on new data. In particular, we examine the annotations of an existing acquisition to determine pivot locations that characterize the reference segmentation, and use a patch matching algorithm to find their candidate visual correspondences in a new volume.
View Article and Find Full Text PDFIn this study, we compared a monocular computer vision (MCV)-based approach with the golden standard for collecting kinematic data on ski tracks (i.e., video-based stereophotogrammetry) and assessed its deployment readiness for answering applied research questions in the context of alpine skiing.
View Article and Find Full Text PDFStudying how neural circuits orchestrate limbed behaviors requires the precise measurement of the positions of each appendage in three-dimensional (3D) space. Deep neural networks can estimate two-dimensional (2D) pose in freely behaving and tethered animals. However, the unique challenges associated with transforming these 2D measurements into reliable and precise 3D poses have not been addressed for small animals including the fly, .
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
February 2021
In this paper, we propose a novel unsupervised approach for sequence matching by explicitly accounting for the locality properties in the sequences. In contrast to conventional approaches that rely on frame-to-frame matching, we conduct matching using sequencelet or seqlet, a sub-sequence wherein the frames share strong similarities and are thus grouped together. The optimal seqlets and matching between them are learned jointly, without any supervision from users.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2020
Detection of curvilinear structures in images has long been of interest. One of the most challenging aspects of this problem is inferring the graph representation of the curvilinear network. Most existing delineation approaches first perform binary segmentation of the image and then refine it using either a set of hand-designed heuristics or a separate classifier that assigns likelihood to paths extracted from the pixel-wise prediction.
View Article and Find Full Text PDFIEEE Trans Image Process
October 2019
This paper performs a comprehensive and comparative evaluation of the state-of-the-art local features for the task of image-based 3D reconstruction. The evaluated local features cover the recently developed ones by using powerful machine learning techniques and the elaborately designed handcrafted features. To obtain a comprehensive evaluation, we choose to include both float type features and binary ones.
View Article and Find Full Text PDF