Publications by authors named "Pascal Fossat"

Parkinson's disease arises from the degeneration of dopaminergic neurons in the substantia nigra pars compacta, leading to motor symptoms such as akinesia, rigidity, and tremor at rest. The non-motor component of Parkinson's disease includes increased neuropathic pain, the prevalence of which is 4 to 5 times higher than the general rate. By studying a mouse model of Parkinson's disease induced by 6-hydroxydopamine, we assessed the impact of dopamine depletion on pain modulation.

View Article and Find Full Text PDF

Chronic pain is a pathological state defined as daily pain sensation over three consecutive months. It affects up to 30% of the general population. Although significant research efforts have been made in the past 30 years, only a few and relatively low effective molecules have emerged to treat chronic pain, with a considerable translational failure rate.

View Article and Find Full Text PDF

Pain is a non-motor symptom that impairs quality of life in patients with Parkinson's disease. Pathological nociceptive hypersensitivity in patients could be due to changes in the processing of somatosensory information at the level of the basal ganglia, including the subthalamic nucleus (STN), but the underlying mechanisms are not yet defined. Here, we investigated the interaction between the STN and the dorsal horn of the spinal cord (DHSC), by first examining the nature of STN neurons that respond to peripheral nociceptive stimulation and the nature of their responses under normal and pathological conditions.

View Article and Find Full Text PDF

In neuropathic pain, recent evidence has highlighted a sex-dependent role of the P2X4 receptor in spinal microglia in the development of tactile allodynia following nerve injury. Here, using internalization-defective P2X4mCherryIN knockin mice (P2X4KI), we demonstrate that increased cell surface expression of P2X4 induces hypersensitivity to mechanical stimulations and hyperexcitability in spinal cord neurons of both male and female naive mice. During neuropathy, both wild-type (WT) and P2X4KI mice of both sexes develop tactile allodynia accompanied by spinal neuron hyperexcitability.

View Article and Find Full Text PDF

By endowing light control of neuronal activity, optogenetics and photopharmacology are powerful methods notably used to probe the transmission of pain signals. However, costs, animal handling and ethical issues have reduced their dissemination and routine use. Here we report LAKI (Light Activated K channel Inhibitor), a specific photoswitchable inhibitor of the pain-related two-pore-domain potassium TREK and TRESK channels.

View Article and Find Full Text PDF

Descending control from the brain to the spinal cord shapes our pain experience, ranging from powerful analgesia to extreme sensitivity. Increasing evidence from both preclinical and clinical studies points to an imbalance toward descending facilitation as a substrate of pathological pain, but the underlying mechanisms remain unknown. We used an optogenetic approach to manipulate serotonin (5-HT) neurons of the nucleus raphe magnus that project to the dorsal horn of the spinal cord.

View Article and Find Full Text PDF

Clinical evidence suggests that pain hypersensitivity develops in patients with attention-deficit/hyperactivity disorder (ADHD). However, the mechanisms and neural circuits involved in these interactions remain unknown because of the paucity of studies in animal models. We previously validated a mouse model of ADHD obtained by neonatal 6-hydroxydopamine (6-OHDA) injection.

View Article and Find Full Text PDF

Affective touch is necessary for proper neurodevelopment and sociability. However, it remains unclear how the neurons innervating the skin detect affective and social behaviors. The C low-threshold mechanoreceptors (C-LTMRs), a specific population of somatosensory neurons in mice, appear particularly well suited, physiologically and anatomically, to perceive affective and social touch.

View Article and Find Full Text PDF

Prefrontal control of cognitive functions critically depends upon glutamatergic transmission and N-methyl D-aspartate (NMDA) receptors, the activity of which is regulated by dopamine. Yet whether the NMDA receptor coagonist d-serine is implicated in the dopamine-glutamate dialogue in the prefrontal cortex (PFC) and other brain areas remains unexplored. Here, using electrophysiological recordings, we show that d-serine is required for the fine-tuning of glutamatergic neurotransmission, neuronal excitability, and synaptic plasticity in the PFC through the actions of dopamine at D and D receptors.

View Article and Find Full Text PDF

Animal models of pain consist of modeling a pain-like state and measuring the consequent behavior. The first animal models of neuropathic pain (NP) were developed in rodents with a total lesion of the sciatic nerve. Later, other models targeting central or peripheral branches of nerves were developed to identify novel mechanisms that contribute to persistent pain conditions in NP.

View Article and Find Full Text PDF

Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies.

View Article and Find Full Text PDF
Article Synopsis
  • Windup is a key mechanism for studying central sensitization to pain, showcasing increased spinal response to repetitive pain stimuli.
  • The study demonstrates that in adult rats, windup relies on a balance between excitatory NMDA receptors and inhibitory glycinergic receptors, similar to juvenile rats.
  • Additionally, L-type calcium channels are involved in both the dorsal and ventral horns of the spinal cord, indicating that windup properties are consistent across different spinal networks.
View Article and Find Full Text PDF

Serotonin (5-HT) is a major neuromodulator acting on the nervous system. Its various effects have been studied in vertebrates, as well as in arthropods, from the cellular and subcellular compartments up to the behavioral level, which includes the control of mood, aggression, locomotion, and anxiety. The diversity of responses of neurons to 5-HT has been related to its mode of application, the diversity of 5-HT-receptors, and the animals' social status history.

View Article and Find Full Text PDF

The molting process of arthropods, chiefly controlled by ecdysteroids, is generally considered very stressful. Our previous investigations have shown that crayfish, after having experienced stressful situations, display anxiety-like behavior (ALB), characterized by aversion to light in a dark/light plus-maze (DLPM). In the present experiments, the spontaneous exploratory behavior of isolated crayfish was analyzed in a DLPM at different stages of their molt cycle.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder characterized by impaired attention, impulsivity and hyperactivity. The "neonatal 6-hydroxydopamine" (6-OHDA) lesion is a commonly used model of ADHD in rat. However, a comprehensive assessment of ADHD-like symptoms is still missing, and data in mouse remain largely unavailable.

View Article and Find Full Text PDF

Pain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity.

View Article and Find Full Text PDF

Introduction: Purinergic ionotropic P2X receptors (P2RX) are involved in normal and pathological pain transmission. Among them, P2X4 are expressed in dorsal root ganglion and in the spinal cord. Their activation during nerve injury or chronic peripheral inflammation modifies pain sensitivity that leads to the phenomenon of allodynia and hyperalgesia.

View Article and Find Full Text PDF

Background: Pain is a major non motor symptom that contributes to impaired quality of life in PD. However, its mechanism is unknown.

Objectives And Methods: We sought to identify the pain phenotypes and parallel changes in spinal integration of peripheral stimuli in a rat model of PD induced by lesions of SN dopamine neurons, using behavioral plantar and von Frey tests as well as electrophysiology of the dorsal horn.

View Article and Find Full Text PDF

We injected serotonin (5-HT) into adult male crayfish before pairing them with size-matched non-injected competitors, and observed dyadic agonistic interactions. Paradoxically, 5-HT elicited opposite behavioral responses if the injected animal was opposed by a smaller or larger rival: the level of aggressiveness of the injected crayfish was higher when facing a larger rival but lower when facing a smaller rival. Our results indicate that the effects of 5-HT on aggressiveness are dependent on the perception of the relative size difference of the opponent.

View Article and Find Full Text PDF

The dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain.

View Article and Find Full Text PDF

Unlabelled: L-type voltage-gated calcium channels are ubiquitous channels in the CNS. L-type calcium channels (LTCs) are mostly post-synaptic channels regulating neuronal firing and gene expression. They play a role in important physio-pathological processes such as learning and memory, Parkinson's disease, autism and, as recognized more recently, in the pathophysiology of pain processes.

View Article and Find Full Text PDF

Social interactions leading to dominance hierarchies often elicit psychological disorders in mammals including harassment and anxiety. Here, we demonstrate that this sequence also occurs in an invertebrate, the crayfish Procambarus clarkii. When placed in the restricted space of an aquarium, crayfish dyads generally fight until one of the opponents suddenly escapes, thereafter clearly expressing a submissive behaviour.

View Article and Find Full Text PDF

Key Points: L-type calcium channels in the CNS exist as two subunit forming channels, Cav1.2 and Cav1.3, which are involved in short- and long-term plasticity.

View Article and Find Full Text PDF

In the animal kingdom, biogenic amines are widespread modulators of the nervous system that frequently interact to control mood. Our previous investigations in crayfish (Procambarus clarkii) have established that stress induces changes in brain serotonin (5-HT) concentrations that are responsible for the appearance of anxiety-like behavior (ALB). Here, we further analyze the roles of 5-HT and another biogenic amine, dopamine (DA), on the crayfish response to stress.

View Article and Find Full Text PDF

Anxiety, a behavioral consequence of stress, has been characterized in humans and some vertebrates, but not invertebrates. Here, we demonstrate that after exposure to stress, crayfish sustainably avoided the aversive illuminated arms of an aquatic plus-maze. This behavior was correlated with an increase in brain serotonin and was abolished by the injection of the benzodiazepine anxiolytic chlordiazepoxide.

View Article and Find Full Text PDF