Reversed-phase liquid chromatographic mass spectrometry (rpLC-MS) is a universal, platformed, and essential analytical technique within pharmaceutical and biopharmaceutical research. Typical rpLC method gradient times can range from 5 to 20 min. As monoclonal antibody (mAb) therapies continue to evolve and bispecific antibodies (BsAbs) become more established, research stage engineering panels will clearly evolve in size.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2021
Eukaryotic cells are characterized by their exquisite compartmentalization resulting from a cornucopia of membrane-bound organelles. Each of these compartments hosts a flurry of biochemical reactions and supports biological functions such as genome storage, membrane protein and lipid biosynthesis/degradation and ATP synthesis, all essential to cellular life. Acting as hubs for the transfer of matter and signals between organelles and throughout the cell, membrane contacts sites (MCSs), sites of close apposition between membranes from different organelles, are essential to cellular homeostasis.
View Article and Find Full Text PDFBiological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology.
View Article and Find Full Text PDFApicomplexans form a large phylum of parasitic protozoa, including the genera , and , the causative agents of malaria, toxoplasmosis, and cryptosporidiosis, respectively. They cause diseases not only in humans but also in animals, with dramatic consequences in agriculture. Most apicomplexans are vacuole-dwelling and obligate intracellular parasites; as they invade the host cell, they become encased in a parasitophorous vacuole (PV) derived from the host cellular membrane.
View Article and Find Full Text PDFElectrospray ionization mass spectrometry (ESI-MS) is a ubiquitously used analytical method applied across multiple departments in biopharma, ranging from early research discovery to process development. Accurate, efficient, and consistent protein MS spectral deconvolution across multiple instrument and detector platforms (time-of-flight, Orbitrap, Fourier-transform ion cyclotron resonance) is essential. When proteins are ionized during the ESI process, a distribution of consecutive multiply charged ions are observed on the / scale, either positive [M + H] or negative [M - H] depending on the ionization polarity.
View Article and Find Full Text PDFClC-1 protein channels facilitate rapid passage of chloride ions across cellular membranes, thereby orchestrating skeletal muscle excitability. Malfunction of ClC-1 is associated with myotonia congenita, a disease impairing muscle relaxation. Here, we present the cryo-electron microscopy (cryo-EM) structure of human ClC-1, uncovering an architecture reminiscent of that of bovine ClC-K and CLC transporters.
View Article and Find Full Text PDFMembrane contact sites between the endoplasmic reticulum (ER) and mitochondria function as a central hub for the exchange of phospholipids and calcium. The yeast Endoplasmic Reticulum-Mitochondrion Encounter Structure (ERMES) complex is composed of five subunits that tether the ER and mitochondria. Three ERMES subunits (i.
View Article and Find Full Text PDFTherapeutic target characterization involves many components, including accurate molecular weight (MW) determination. Knowledge of the accurate MW allows one to detect the presence of post-translational modifications, proteolytic cleavages, and importantly, if the correct construct has been generated and purified. Denaturing liquid chromatography-mass spectrometry (LC-MS) can be an attractive method for obtaining this information.
View Article and Find Full Text PDFThe putative Plasmodium translocon of exported proteins (PTEX) is essential for transport of malarial effector proteins across a parasite-encasing vacuolar membrane into host erythrocytes, but the mechanism of this process remains unknown. Here we show that PTEX is a bona fide translocon by determining structures of the PTEX core complex at near-atomic resolution using cryo-electron microscopy. We isolated the endogenous PTEX core complex containing EXP2, PTEX150 and HSP101 from Plasmodium falciparum in the 'engaged' and 'resetting' states of endogenous cargo translocation using epitope tags inserted using the CRISPR-Cas9 system.
View Article and Find Full Text PDFMembrane protein characterization is consistently hampered by challenges with expression, purification, and solubilization. Among several biophysical techniques employed for their characterization, native-mass spectrometry (MS) has emerged as a powerful tool for the analysis of membrane proteins and complexes. Here, two MS platforms, the FT-ICR and Q-ToF, have been explored to analyze the homotetrameric water channel protein, AquaporinZ (AqpZ), under non-denaturing conditions.
View Article and Find Full Text PDFMembrane contact sites between organelles serve as molecular hubs for the exchange of metabolites and signals. In yeast, the Endoplasmic Reticulum - Mitochondrion Encounter Structure (ERMES) tethers these two organelles likely to facilitate the non-vesicular exchange of essential phospholipids. Present in Fungi and Amoebas but not in Metazoans, ERMES is composed of five distinct subunits; among those, Mdm12, Mmm1 and Mdm34 each contain an SMP domain functioning as a lipid transfer module.
View Article and Find Full Text PDFThe N-end rule pathway uses an evolutionarily conserved mechanism in bacteria and eukaryotes that marks proteins for degradation by ATP-dependent chaperones and proteases such as the Clp chaperones and proteases. Specific N-terminal amino acids (N-degrons) are sufficient to target substrates for degradation. In bacteria, the ClpS adaptor binds and delivers N-end rule substrates for their degradation upon association with the ClpA/P chaperone/protease.
View Article and Find Full Text PDFCaseinolytic chaperones and proteases (Clp) belong to the AAA+ protein superfamily and are part of the protein quality control machinery in cells. The eukaryotic parasite Plasmodium falciparum, the causative agent of malaria, has evolved an elaborate network of Clp proteins including two distinct ClpB ATPases. ClpB1 and ClpB2 are involved in different aspects of parasitic proteostasis.
View Article and Find Full Text PDFMembrane contact sites (MCS) between organelles are proposed as nexuses for the exchange of lipids, small molecules, and other signals crucial to cellular function and homeostasis. Various protein complexes, such as the endoplasmic reticulum-mitochondrial encounter structure (ERMES), function as dynamic molecular tethers between organelles. Here, we report the reconstitution and characterization of subcomplexes formed by the cytoplasm-exposed synaptotagmin-like mitochondrial lipid-binding protein (SMP) domains present in three of the five ERMES subunits--the soluble protein Mdm12, the endoplasmic reticulum (ER)-resident membrane protein Mmm1, and the mitochondrial membrane protein Mdm34.
View Article and Find Full Text PDFToxoplasma gondii is a protozoan pathogen in the phylum Apicomplexa that resides within an intracellular parasitophorous vacuole (PV) that is selectively permeable to small molecules through unidentified mechanisms. We have identified GRA17 as a Toxoplasma-secreted protein that localizes to the parasitophorous vacuole membrane (PVM) and mediates passive transport of small molecules across the PVM. GRA17 is related to the putative Plasmodium translocon protein EXP2 and conserved across PV-residing Apicomplexa.
View Article and Find Full Text PDFSurvival of the malaria parasite Plasmodium falciparum when it infects red blood cells depends upon its ability to export hundreds of its proteins beyond an encasing vacuole. Protein export is mediated by a parasite-derived protein complex, the Plasmodium translocon of exported proteins (PTEX), and requires unfolding of the different cargos prior to their translocation across the vacuolar membrane. Unfolding is performed by the AAA+protein unfoldase HSP101/ClpB2 and the thioredoxin-2 enzyme (TRX2).
View Article and Find Full Text PDFBovine CD38/NAD(+)glycohydrolase (bCD38) catalyses the hydrolysis of NAD(+) into nicotinamide and ADP-ribose and the formation of cyclic ADP-ribose (cADPR). We solved the crystal structures of the mono N-glycosylated forms of the ecto-domain of bCD38 or the catalytic residue mutant Glu218Gln in their apo state or bound to aFNAD or rFNAD, two 2'-fluorinated analogs of NAD(+). Both compounds behave as mechanism-based inhibitors, allowing the trapping of a reaction intermediate covalently linked to Glu218.
View Article and Find Full Text PDFBackground: Ire1 is a signal transduction protein in the endoplasmic reticulum (ER) membrane that serves to adjust the protein-folding capacity of the ER according to the needs of the cell. Ire1 signals, in a transcriptional program, the unfolded protein response (UPR) via the coordinated action of its protein kinase and RNase domains. In this study, we investigated how the binding of cofactors to the kinase domain of Ire1 modulates its RNase activity.
View Article and Find Full Text PDFBackground: The unfolded protein response (UPR) controls the protein folding capacity of the endoplasmic reticulum (ER). Central to this signaling pathway is the ER-resident bifunctional transmembrane kinase/endoribonuclease Ire1. The endoribonuclease (RNase) domain of Ire1 initiates a non-conventional mRNA splicing reaction, leading to the production of a transcription factor that controls UPR target genes.
View Article and Find Full Text PDFThe ability to follow enzyme activity in a cellular context represents a challenging technological frontier that impacts fields ranging from disease pathogenesis to epigenetics. Activity-based probes (ABPs) label the active form of an enzyme via covalent modification of catalytic residues. Here we present an analysis of parameters influencing potency of peptide phosphonate ABPs for trypsin-fold S1A proteases, an abundant and important class of enzymes with similar substrate specificities.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2010
The structure of the protein-translocating channel SecYEβ from Pyrococcus furiosus at 3.1-Å resolution suggests a mechanism for chaperoning transmembrane regions of a protein substrate during its lateral delivery into the lipid bilayer. Cytoplasmic segments of SecY orient the C-terminal α-helical region of another molecule, suggesting a general binding mode and a promiscuous guiding surface capable of accommodating diverse nascent chains at the exit of the ribosomal tunnel.
View Article and Find Full Text PDFAberrant folding of proteins in the endoplasmic reticulum activates the bifunctional transmembrane kinase/endoribonuclease Ire1. Ire1 excises an intron from HAC1 messenger RNA in yeasts and Xbp1 messenger RNA in metozoans encoding homologous transcription factors. This non-conventional mRNA splicing event initiates the unfolded protein response, a transcriptional program that relieves the endoplasmic reticulum stress.
View Article and Find Full Text PDFIn all organisms, a ribonucleoprotein called the signal recognition particle (SRP) and its receptor (SR) target nascent proteins from the ribosome to the translocon for secretion or membrane insertion. We present the first X-ray structures of an archeal FtsY, the receptor from the hyper-thermophile Pyrococcus furiosus (Pfu), in its free and GDP*magnesium-bound forms. The highly charged N-terminal domain of Pfu-FtsY is distinguished by a long N-terminal helix.
View Article and Find Full Text PDFIn all organisms the Signal Recognition Particle (SRP), binds to signal sequences of proteins destined for secretion or membrane insertion as they emerge from translating ribosomes. In Archaea and Eucarya, the conserved ribonucleoproteic core is composed of two proteins, the accessory protein SRP19, the essential GTPase SRP54, and an evolutionarily conserved and essential SRP RNA. Through the GTP-dependent interaction between the SRP and its cognate receptor SR, ribosomes harboring nascent polypeptidic chains destined for secretion are dynamically transferred to the protein translocation apparatus at the membrane.
View Article and Find Full Text PDF