Publications by authors named "Pascal E D Lachance"

This report is based on an ongoing study to examine gene expression differences in monkey lateral geniculate nucleus (LGN). Here, samples from an Old World species, the vervet monkey (Cercopithecus aethiops), were cross-hybridized to the Rhesus Macaque Genome Array (Affymetrix). Microarray analysis was performed using laser capture microdissected populations of individual neuronal cell bodies isolated from the LGN compared to heterogeneous samples from whole lamina.

View Article and Find Full Text PDF

We performed microarray gene expression analyses on the visual cortex of Old-World monkeys (Cercopithicus aethiops) in an effort to identify transcripts associated with developmental maturation and activity-driven changes during the visual critical period. Samples derived from normal animals and those subjected to monocular enucleation (ME) were hybridized to human Affymetrix HG-U95Av2 oligonucleotide microarrays (N = 12) and the results were independently validated by real-time quantitative RT-PCR. To identify genes exhibiting significant expression differences among our samples, the microarray hybridization data were processed with two software packages that use different analytical models (Affymetrix MicroArray Suite 5.

View Article and Find Full Text PDF

Elevation of intracellular Ca2+ levels activates calcium/calmodulin-dependent protein kinase (CaMK) IV, which in turn plays an important role in neuroprotection and neuroplasticity. The possibility that CaMKIV is similarly involved in neocortical tissue has not been examined previously, especially with regard to the plastic nature of ocular dominance features in the primary visual cortex (area V1). We addressed this question by way of monocular enucleation (ME) to disrupt sensory input and examine CaMKIV expression changes in monkey area V1.

View Article and Find Full Text PDF

Eukaryotic translation initiation factor 4E (eIF4E) binds to the cap structure at the 5' end of mRNAs and is a critical target for the control of protein synthesis. eIF4E is phosphorylated in many systems in response to extracellular stimuli, but biochemical evidence to date has been equivocal as to the biological significance of this modification. Here we use a genetic approach to this problem.

View Article and Find Full Text PDF