Publications by authors named "Pascal Cousin"

Long-range transcriptional activation of gene promoters by abundant enhancers in animal genomes calls for mechanisms to limit inappropriate regulation. DNA elements called insulators serve this purpose by shielding promoters from an enhancer when interposed. Unlike promoters and enhancers, insulators have not been systematically characterized due to lacking high-throughput screening assays, and questions regarding how insulators are distributed and encoded in the genome remain.

View Article and Find Full Text PDF

Genomic insulators are DNA elements that prevent transcriptional activation of a promoter by an enhancer when interposed. We present a protocol for insulator-seq that enables high-throughput screening of genomic insulators using a plasmid-based massively parallel reporter assay in Drosophila cultured cells. We describe steps for insulator reporter plasmid library generation, transient transfection into cultured cells, and sequencing library preparation and provide a pipeline for data analysis.

View Article and Find Full Text PDF

MAF1 is a nutrient-sensitive, TORC1-regulated repressor of RNA polymerase III (Pol III). MAF1 downregulation leads to increased lipogenesis in , , and mice. However, mice are lean as increased lipogenesis is counterbalanced by futile pre-tRNA synthesis and degradation, resulting in increased energy expenditure.

View Article and Find Full Text PDF

Previous studies have identified topologically associating domains (TADs) as basic units of genome organization. We present evidence of a previously unreported level of genome folding, where distant TAD pairs, megabases apart, interact to form meta-domains. Within meta-domains, gene promoters and structural intergenic elements present in distant TADs are specifically paired.

View Article and Find Full Text PDF

Boundaries in animal genomes delimit contact domains with enhanced internal contact frequencies and have debated functions in limiting regulatory cross-talk between domains and guiding enhancers to target promoters. Most mammalian boundaries form by stalling of chromosomal loop-extruding cohesin by CTCF, but most boundaries form CTCF independently. However, how CTCF-independent boundaries form and function remains largely unexplored.

View Article and Find Full Text PDF

Vertebrate genomes are partitioned into contact domains defined by enhanced internal contact frequency and formed by two principal mechanisms: compartmentalization of transcriptionally active and inactive domains, and stalling of chromosomal loop-extruding cohesin by CTCF bound at domain boundaries. While Drosophila has widespread contact domains and CTCF, it is currently unclear whether CTCF-dependent domains exist in flies. We genetically ablate CTCF in Drosophila and examine impacts on genome folding and transcriptional regulation in the central nervous system.

View Article and Find Full Text PDF

RNA polymerase II (Pol II) small nuclear RNA (snRNA) promoters and type 3 Pol III promoters have highly similar structures; both contain an interchangeable enhancer and "proximal sequence element" (PSE), which recruits the SNAP complex (SNAPc). The main distinguishing feature is the presence, in the type 3 promoters only, of a TATA box, which determines Pol III specificity. To understand the mechanism by which the absence or presence of a TATA box results in specific Pol recruitment, we examined how SNAPc and general transcription factors required for Pol II or Pol III transcription of SNAPc-dependent genes (i.

View Article and Find Full Text PDF

Initiation of gene transcription by RNA polymerase (Pol) III requires the activity of TFIIIB, a complex formed by Brf1 (or Brf2), TBP (TATA-binding protein), and Bdp1. TFIIIB is required for recruitment of Pol III and to promote the transition from a closed to an open Pol III pre-initiation complex, a process dependent on the activity of the Bdp1 subunit. Here, we present a crystal structure of a Brf2-TBP-Bdp1 complex bound to DNA at 2.

View Article and Find Full Text PDF

Overlapping gene arrangements can potentially contribute to gene expression regulation. A mammalian interspersed repeat (MIR) nested in antisense orientation within the first intron of the gene, encoding an RNA polymerase III (Pol III) subunit, is conserved in mammals and highly occupied by Pol III. Using a fluorescence assay, CRISPR/Cas9-mediated deletion of the MIR in mouse embryonic stem cells, and chromatin immunoprecipitation assays, we show that the MIR affects expression through transcriptional interference.

View Article and Find Full Text PDF

TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive.

View Article and Find Full Text PDF

The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver.

View Article and Find Full Text PDF

Our view of the RNA polymerase III (Pol III) transcription machinery in mammalian cells arises mostly from studies of the RN5S (5S) gene, the Ad2 VAI gene, and the RNU6 (U6) gene, as paradigms for genes with type 1, 2, and 3 promoters. Recruitment of Pol III onto these genes requires prior binding of well-characterized transcription factors. Technical limitations in dealing with repeated genomic units, typically found at mammalian Pol III genes, have so far hampered genome-wide studies of the Pol III transcription machinery and transcriptome.

View Article and Find Full Text PDF

Chemokines constitute a protein family that exhibit a variety of biological activities involved in normal and pathological physiological processes. CCL11 (eotaxin), CCL19 (MIP-3beta), CCL22 (MDC), CXCL11 (I-TAC) and CXCL12 (SDF-1alpha) chemokines, modified with the Alexa Fluor 647 fluorescent dye at specific positions along their sequence, were produced by a chemical route and their biological activities were characterized. In a migration assay, fluorescent chemokines were as biologically active as the unmodified forms.

View Article and Find Full Text PDF

Maturity-onset diabetes of the young (MODY) is a subtype of early-onset diabetes mellitus which is characterized by autosomal dominant inheritance. Several genes are known to induce MODY : HNF4A/MODY1, GCK/MODY2, TCF1/MODY3, IPF1/MODY4, TCF2/MODY5 and NEUROD1/MODY6. We studied a Swiss family with 13 diabetic patients over 3 generations.

View Article and Find Full Text PDF

Purpose: To investigate the molecular pathology underlying BIGH3-related corneal dystrophies (CDs) and to further delineate genotype-phenotype specificity.

Methods: Sixty-one index patients with CDs were subjected to phenotypic and genotypic characterization. The corneal phenotypes of all patients were assessed by biomicroscopy and documented by slit lamp photography.

View Article and Find Full Text PDF