Publications by authors named "Pascal Bus"

Clusterin, a glycoprotein encoded by the CLU gene, is expressed in many tissues, including the kidney, and clusterin expression is upregulated in the glomeruli of patients with various forms of kidney disease. Here, we investigated the role of clusterin in diabetic nephropathy (DN). In this study, we found that glomerular clusterin expression was increased in both patients with DN and streptozotocin-induced diabetic mice and that it co-localised with the podocyte marker WT1, indicating clusterin is expressed in podocytes.

View Article and Find Full Text PDF

In diabetic nephropathy, differential expression of growth factors leads to vascular changes, including endothelial cell activation, monocyte infiltration, and inflammation. Endoglin plays an important role in endothelial function and is also associated with inflammation. In the kidney, vascular endoglin expression is increased in animal models of renal injury, where it contributes to disease severity, possibly by promoting endothelial cell activation and inflammation.

View Article and Find Full Text PDF

Introduction: Complement activation plays a role in various organs in patients with diabetes. However, in diabetic nephropathy (DN), the role of complement activation is poorly understood. We examined the prevalence and clinical significance of complement deposits in the renal tissue of cases with type 1 and type 2 diabetes with and without DN.

View Article and Find Full Text PDF

Aims/hypothesis: Animal models of diabetic nephropathy show increased levels of glomerular vascular endothelial growth factor (VEGF)-A, and several studies have shown that inhibiting VEGF-A in animal models of diabetes can prevent albuminuria and glomerular hypertrophy. However, in those studies, treatment was initiated before the onset of kidney damage. Therefore, the aim of this study was to investigate whether transfecting mice with the VEGF-A inhibitor sFlt-1 (encoding soluble fms-related tyrosine kinase 1) can reverse pre-existing kidney damage in a mouse model of type 1 diabetes.

View Article and Find Full Text PDF

Diabetic nephropathy is the leading cause of end-stage renal disease. Diabetic patients have increased plasma concentrations of apolipoprotein C-I (apoCI), and meta-analyses found that a polymorphism in APOC1 is associated with an increased risk of developing nephropathy. To investigate whether overexpressing apoCI contributes to the development of kidney damage, we studied renal tissue and peritoneal macrophages from APOC1 transgenic (APOC1-tg) mice and wild-type littermates.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionophbrpole2kabtndd2tf3bnutjugobdt): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once