Publications by authors named "Pascal Bartling"

The roseobacter group of marine bacteria is characterized by a mosaic distribution of ecologically important phenotypes. These are often encoded on mobile extrachromosomal replicons. So far, conjugation had only been experimentally proven between the two model organisms and .

View Article and Find Full Text PDF

Many marine Alphaproteobacteria of the Roseobacter group show a characteristic swim-or-stick lifestyle, for which motility is a crucial trait. Three phylogenetically distinct flagellar gene clusters (FGCs) have been identified in Rhodobacteraceae that have been named fla1, fla2 and fla3 according to their relative abundance. In addition to the flagellar-dependent swimming and swarming motility, pilus-dependent twitching mediates bacterial locomotion.

View Article and Find Full Text PDF

A multipartite genome organization with a chromosome and many extrachromosomal replicons (ECRs) is characteristic for . The best investigated ECRs of terrestrial rhizobia are the symbiotic plasmids for legume root nodulation and the tumor-inducing (Ti) plasmid of . RepABC plasmids represent the most abundant alphaproteobacterial replicon type.

View Article and Find Full Text PDF

Phaeobacter inhibens DSM 17395, a model organism for marine Roseobacter group, was studied for its response to its own antimicrobial compound tropodithietic acid (TDA). TDA biosynthesis is encoded on the largest extrachromosomal element of P. inhibens, the 262 kb plasmid, whose curation leads to an increased growth and biomass yield.

View Article and Find Full Text PDF

Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation.

View Article and Find Full Text PDF