Two important characteristics of metapopulations are extinction-(re)colonization dynamics and gene flow between subpopulations. These processes can cause strong shifts in genome-wide allele frequencies that are generally not observed in "classical" (large, stable, and panmictic) populations. Subpopulations founded by one or a few individuals, the so-called propagule model, are initially expected to show intermediate allele frequencies at polymorphic sites until natural selection and genetic drift drive allele frequencies toward a mutation-selection-drift equilibrium characterized by a negative exponential-like distribution of the site frequency spectrum.
View Article and Find Full Text PDFCrabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model for investigating these questions and hence genomic resources of these crabs would be particularly useful.
View Article and Find Full Text PDFMicrosporidia are intracellular parasitic fungi whose genomes rank among the smallest of all known eukaryotes. A number of outstanding questions remain concerning the evolution of their large-scale variation in genome architecture, responsible for genome size variation of more than an order of magnitude. This genome report presents the first near-chromosomal assembly of a large-genome microsporidium, Hamiltosporidium tvaerminnensis.
View Article and Find Full Text PDF