Publications by authors named "Pascal Allain"

Background: In prior work, the authors demonstrated that two-dimensional speckle-tracking (2DST) correlated well but systematically overestimated global longitudinal strain (LS) and circumferential strain (CS) compared with two-dimensional cardiac magnetic resonance tagging (2DTagg) and had poor agreement on a segmental basis. Because three-dimensional speckle-tracking (3DST) has recently emerged as a new, more comprehensive evaluation of myocardial deformation, this study was undertaken to evaluate whether it would compare more favorably with 2DTagg than 2DST.

Methods: In a prospective two-center trial, 119 subjects (29 healthy volunteers, 63 patients with left ventricular dysfunction, and 27 patients with left ventricular hypertrophy) underwent 2DST, 3DST, and 2DTagg.

View Article and Find Full Text PDF

Background: Despite widespread use to characterize and refine prognosis, validation data of two-dimensional (2D) speckle tracking (2DST) echocardiography myocardial strain measurement remain scarce.

Methods And Results: Global and regional subendocardial peak-systolic Lagrangian longitudinal (LS) and circumferential strain (CS) by 2DST and 2D-tagged (2DTagg) cardiac magnetic resonance imaging were compared against sonomicrometry in a dynamic heart phantom and among each other in 136 patients included prospectively at 2 centers. The ability of regional LS and CS 2DST and 2DTagg to identify late gadolinium enhancement was compared using receiver operating characteristics curves.

View Article and Find Full Text PDF

Diagnosing and localizing myocardial infarct is crucial for early patient management and therapy planning. We propose a new method for predicting the location of myocardial infarct from local wall deformation, which has value for risk stratification from routine examinations such as (3D) echocardiography. The pipeline combines non-linear dimensionality reduction of deformation patterns and two multi-scale kernel regressions.

View Article and Find Full Text PDF

This paper presents a novel algorithm that extends HARP to handle 3D tagged MRI images. HARP results were regularized by an original regularization framework defined in an anatomical space of coordinates. In the meantime, myocardium incompressibility was integrated in order to correct the radial strain which is reported to be more challenging to recover.

View Article and Find Full Text PDF

Background: Three-dimensional echocardiography (3DE) is a reliable and reproducible tool for assessing left ventricular (LV) function but remains sensitive to patient echogenicity. Contrast-enhanced 3DE (C3DE) has the potential to improve quantification in challenging patients. The aim of this study was to evaluate the impact of temporal resolution, spatial resolution, and image dynamic range on LV function assessed using C3DE compared with cardiac magnetic resonance imaging (MRI) in patients with poor echogenicity.

View Article and Find Full Text PDF

While abnormal patterns of cardiac electrophysiological activation are at the origin of important cardiovascular diseases (e.g., arrhythmia, asynchrony), the only clinically available method to observe detailed left ventricular endocardial surface activation pattern is through invasive catheter mapping.

View Article and Find Full Text PDF

We propose a new approach for the generation of synthetic but visually realistic time series of cardiac images based on an electromechanical model of the heart and real clinical 4-D image sequences. This is achieved by combining three steps. The first step is the simulation of a cardiac motion using an electromechanical model of the heart and the segmentation of the end diastolic image of a cardiac sequence.

View Article and Find Full Text PDF

In this paper, we propose to create a rich database of synthetic time series of 3D echocardiography (US) images using simulations of a cardiac electromechanical model, in order to study the relationship between electrical disorders and kinematic patterns visible in medical images. From a real 4D sequence, a software pipeline is applied to create several synthetic sequences by combining various steps including motion tracking and segmentation. We use here this synthetic database to train a machine learning algorithm which estimates the depolarization times of each cardiac segment from invariant kinematic descriptors such as local displacements or strains.

View Article and Find Full Text PDF

Multiple imaging modalities are required in patients receiving cardiac resynchronization therapy. We have developed a strategy to integrate echocardiographic and angiographic information to facilitate left ventricle (LV) lead position. Full three-dimensional LV-volumes (3DLVV) and dyssynchrony maps were acquired before and after resynchronization.

View Article and Find Full Text PDF

Aims: Determination of left ventricular (LV) volumes and ejection fraction (EF) from two-dimensional echocardiographic (2DE) images is subjective, time-consuming, and relatively inaccurate because of foreshortened views and the use of geometric assumptions. Our aims were (1) to validate a new method for rapid, online measurement of LV volumes from real-time three-dimensional echocardiographic (RT3DE) data using cardiac magnetic resonance (CMR) as the reference and (2) to compare its accuracy and reproducibility with standard 2DE measurements.

Methods And Results: CMR, 2DE, and RT3DE datasets were obtained in 50 patients.

View Article and Find Full Text PDF