Publications by authors named "Pasaro R"

Background: Edible microalgae are marine or fresh water mesophilic species. Although the harvesting of microalgae offers an abundance of opportunities to the food and pharmaceutical industries, the possibility to use extremophilic microalgae as a food source for animals is not well-documented.

Objective: We studied the effects of dietary supplementation of a powdered form of the acidophilic microalga on growth and health parameters of laboratory rats.

View Article and Find Full Text PDF

The general organization of cholinergic and nitrergic elements in the central nervous system seems to be highly conserved among vertebrates, with the involvement of these neurotransmitter systems now well established in sensory, motor and cognitive processing. The goldfish is a widely used animal model in neuroanatomical, neurophysiological, and behavioral research. The purpose of this study was to examine pallial and subpallial cholinoceptive, cholinergic and nitrergic populations in the goldfish telencephalon by means of histochemical and immunohistochemical techniques in order to identify neurons containing acetylcholinesterase (AChE), choline acetyltransferase (ChAT), NADPH-diaphorase (NADPHd), and neuronal nitric oxide synthase (nNOS), and to relate their distribution to their putative functional significance.

View Article and Find Full Text PDF

Neural plasticity is defined as a persistent change in the morphology and/or function based on prior experiences. Plasticity is well evident when the triggering experience occurs early in life, but in the case of respiratory control plasticity, it also can be triggered in adult life. We have combined a 10 days postnatal hypoxic (PH) (0-10 days of age;11% O(2)) and a 15 days intermittent hypoxia (IH) exposures in the adulthood (90-105 days of age; 5% O(2), 40 s/20% O(2), 80 s; 8 h/day) to test if early PH interacts with IH of the adulthood to generate detrimental plastic changes.

View Article and Find Full Text PDF

While neonatal caffeine treatment is commonly used to alleviate apnea of prematurity in neonates and to improve neurological outcomes, its effects on adenosine A₁ and A(2A) receptors (A₁-R and A(2A)-R) are poorly known. We hypothesized that the central pharmacological action of caffeine is mediated by modification of the postnatal development of the adenosinergic system during a critical period. On postnatal days 2-6 (P2-P6) two groups of newborn rats were orally administered water plus glucose and/or caffeine at therapeutic doses to mimic the clinical use of caffeine in human neonates.

View Article and Find Full Text PDF

Selective inhibition of the Na(+)/H(+) exchanger type 3 (NHE3) increases the firing rate of brainstem ventrolateral CO(2)/H(+) sensitive neurons, resembling the responses evoked by hypercapnic stimuli. In anesthetized animals, NHE3 inhibition has also been shown to stimulate the central chemosensitive drive. We aimed to analyze the respiratory-related brainstem regions affected by NHE3 inhibition in anaesthetized spontaneously-breathing rats with intact peripheral afferents.

View Article and Find Full Text PDF

The Na+/H+ exchangers (NHEs) are a family of antiporters involved in the maintenance of neural steady-state intracellular pH. The NHE3 seems to be the predominant subtype in central chemosensitive cells. We aimed to analyze the effect of a selective NHE3 inhibition on the respiratory pattern in spontaneously breathing rats with intact vagi.

View Article and Find Full Text PDF

This work investigates the nitrergic and cholinergic systems in the brain and spinal cord of the goldfish (Carassius auratus). We studied the immunohistochemical localization of antibodies against the neuronal nitric oxide synthase (nNOS) and choline acetyltransferase (ChAT) by bright-field and confocal microscopy. Nitrergic and cholinergic cells were segregated within the telencephalon, in both dorsal and ventral areas, and co-distributed in some nuclei of the diencephalon, mesencephalon, rhombencephalon, and spinal cord.

View Article and Find Full Text PDF

In newborn mice of the control [C3H/HeJ (C3H)] and monoamine oxidase A-deficient (Tg8) strains, in which levels of endogenous serotonin (5-HT) were drastically increased, we investigated how 5-HT system dysregulation affected the maturation of phrenic motoneurons (PhMns), which innervate the diaphragm. First, using immunocytochemistry and confocal microscopy, we observed a 5-HT(2A) receptor (5-HT(2A)-R) expression in PhMns of both C3H and Tg8 neonates at the somatic and dendritic levels, whereas 5-HT(1B) receptor (5-HT(1B)-R) expression was observed only in Tg8 PhMns at the somatic level. We investigated the interactions between 5-HT(2A)-R and 5-HT(1B)-R during maturation by treating pregnant C3H mice with a 5-HT(2A)-R agonist (2,5-dimethoxy-4-iodoamphetamine hydrochloride).

View Article and Find Full Text PDF

The nitrergic system has been inferred from cells positive to nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and/or to the neuronal isoform of nitric oxide synthase (nNOS) immunohistochemistry in different species of vertebrates. The aim of the present work was to systematically study the distribution of cell producing nitric oxide in the goldfish (Carassius auratus) brain. To reach this goal, we firstly studied co-localization for NADPHd and nNOS techniques and demonstrated an extensive double labeling.

View Article and Find Full Text PDF

Caffeine, which belongs to the methylxantine family of compounds, is commonly ingested in a range of beverages such as coffee, tea, and cola drinks. It is also used therapeutically and is frequently employed in the treatment of respiratory disturbances in human neonates. The aim of the present work has been to examine the ontogeny of the adenosine A1 receptor system in the brainstem of the newborn rat following postnatal treatment with caffeine to mimic the therapeutic administration of caffeine to premature human infants.

View Article and Find Full Text PDF

Previous studies have shown that selective inhibition of Na+/H+ exchanger type 3 (NHE3) induces intracellular acidification and activates CO2/H+-sensitive medullary neurons, mimicking the responses evoked by hypercapnic stimuli. In addition, NHE3 blockers administration decreases the duration of apnoea induced by laryngeal stimulation, presumably by means of central chemoreceptor activation. To test the hypothesis that the central chemoreceptor network may be affected by NHE3 inhibition, brainstem c-Fos immunoreactive cell counting was performed after systemic administration of the NHE3 blocker AVE1599 (Aventis Pharma Deutschland GmbH) (2 mg/kg).

View Article and Find Full Text PDF

The caudal parapyramidal area of the rat brain contains a population of neurons that are highly sensitive to an increase in the extracellular hydrogen ion concentration ([H+]o). Some of them fire synchronously with respiration when [H+]o is increased. These chemosensitive neurons are located in the caudal ventrolateral medulla in a medial region, closest to the pyramidal tract, and a lateral region, beneath the lateral reticular nucleus.

View Article and Find Full Text PDF

The ventral surface of the caudal ventrolateral medulla (cVLM) has been shown to generate intense respiratory responses after surface acid-base stimulation. With respect to their chemosensitive characteristics, cVLM neurons have been less studied than other rostral-most regions of the brainstem. The purpose of these experiments was to determine the bioelectric responses of cVLM neurons to acidic stimuli and to determine their chemosensitive properties.

View Article and Find Full Text PDF

The neural mechanisms responsible for respiratory rhythmogenesis in mammals were studied first in vivo in adults and subsequently in vitro in neonates. In vitro data have suggested that the pacemaker neurons are the kernel of the respiratory network. These data are reviewed, and their relevance to adults is discussed.

View Article and Find Full Text PDF

In recent years, the central control of breathing in mammals has been the subject of numerous studies. The aim of the present one was to characterize the neuronal network projecting to the main respiratory motoneurons, in adult mice. To this end, the morphology and location of the respiratory motoneurons and their sequential connections with other neurons were revealed using a transneuronal tracing technique by means of the rabies virus infection.

View Article and Find Full Text PDF

The abnormal metabolism of serotonin during the perinatal period alters respiratory network maturation at birth as revealed by comparing the monoamine oxidase A-deficient transgenic (Tg8) with the control (C3H) mice (Bou-Flores et al., 2000). To know whether these alterations occur only transiently or induce persistent respiratory dysfunction during adulthood, we studied the respiratory activity and regulations in adult C3H and Tg8 mice.

View Article and Find Full Text PDF

The connections of the rostral ventral respiratory cell group (VRG) were retrogradely and anterogradely determined after discrete injections of a mixture of the fluorescent tracers Fast Blue (FB) and Fluoro Ruby (FR) into the physiologically identified rostral inspiratory cell group. Retrogradely FB-labeled neurons and/or anterogradely FR-labeled fibers and terminal fields were located bilaterally in a variety of brain areas. Both retrograde and anterograde labelings were mainly found in: 1) the deep cerebellar nuclei; 2) the lateral lemniscus and paralemniscal nuclei, deep gray, and white intermediate layers of the superior colliculus, tegmental (laterodorsal and microcellular) nuclei, and central gray; and 3) the septohypothalamic nucleus, and lateral and posterior hypothalamic areas.

View Article and Find Full Text PDF

The rostral ventrolateral medulla (RVLM) is a region of the brain primarily involved in cardiovascular control. It receives information from several areas of the brainstem, among which the area postrema (AP) and the nucleus of the solitary tract (NTS). The medial subnuclei of the solitary tract (TS) project towards the RVLM, providing cardiopulmonary information, and the AP serves information about circulatory hormones.

View Article and Find Full Text PDF

The pontomedullary trajectories of projections efferent from the ventral respiratory cell group were anterogradely labelled after discrete injections of Fluoro Ruby into three morphophysiologically identified subdivisions (Bötzinger complex, rostral inspiratory, and caudal expiratory cell groups). The anterogradely labelled varicosities were located in a variety of areas involved in cardiorespiratory function: other subdivisions of the ventral respiratory cell group, the parabrachial (medial, central, and external lateral), Kölliker-Fuse, and lateral paragigantocellular nuclei, A5, and perifacial areas. Although the target areas were similar for the three studied subdivisions, some differences of the location and densities of labelled varicosities were found.

View Article and Find Full Text PDF

The location of neurons projecting by axonal collaterals to the rostral and caudal ventral respiratory group (VRG) regions was determined after discrete injections of Fast blue and Diamidino yellow into the physiologically identified rostral inspiratory VRG and the caudal expiratory VRG areas, respectively. In contrast with single fluorochrome labeled neurons found throughout the rostro-caudal extent of the medulla and pons (in a variety of areas known to have cardiorespiratory function), double-labeled neurons were located in discrete ponto-medullary regions. The largest number of the double-labeled neurons was counted within the peripheral facial area, lateral paragigantocellular nucleus, and the VRG region, ipsi- and contralaterally to the injected side.

View Article and Find Full Text PDF

Propriobulbar neurons having axonal projections to the Ventral Respiratory Group (VRG) were retrogradely labeled after discrete injections of Fast blue into one of the three physiologically identified subdivisions (Bötzinger Complex, rostral inspiratory and caudal expiratory regions). Neurons that project to these regions were found throughout the rostrocaudal extent of the medulla and the pons in a variety of areas known to have cardio-respiratory function. Labeled somata were located within the nuclei of the solitary tract (commissural, intermediate and ventrolateral), other subdivisions of VRG, parabrachial nuclei (medial, dorsolateral and central lateral), Kölliker-Fuse nucleus, retrotrapezoid nucleus, lateral paragigantocellular nucleus and lateral tegmental field of the pons.

View Article and Find Full Text PDF

The location of principal and accessory motoneurons and principal interneurons of the nucleus abducens was determined in the caspian terrapin (Mauremys caspica) by means of horseradish peroxidase histochemical tracing. Enzyme injections were made into the ipsilateral lateral rectus and retractor bulbi muscles and into the contralateral oculomotor nucleus. Labeled principal abducens motoneurons formed a cluster of cells in the rhombencephalon, under the IVth ventricle and adjacent to the medial longitudinal fascicle.

View Article and Find Full Text PDF

The topographical neuronal distribution within the rat nucleus ambiguus has been studied with the simultaneous retrograde labeling technique by means of four different fluorochromes injected within the various muscles and/or nerves of the oro-pharyngeal region. This technique has permitted the identification of several types of neurons along the same coronal plane. Most were motoneurons innervating the various muscles of the upper airway, including pharyngeal constrictor, stylopharyngeal, intrinsic laryngeal and the upper portion of the esophagus.

View Article and Find Full Text PDF

The location and distribution of abducens (ABD) nucleus motoneurons (Mn) and internuclear neurons (Int) were determined in the goldfish (Carassius auratus) by means of horseradish peroxidase and fluorochrome retrograde labeling. ABD Mn were labeled following tracer injection into the ipsilateral lateral rectus muscle. These Mn were arranged in two ventrolateral clusters along the rostro-caudal axis of the posterior brainstem.

View Article and Find Full Text PDF

The location of neurons within the ventral respiratory group (VRG) of rat was mapped following injections of 3 different fluorochrome tracers into different sites known to receive projections from VRG neurons. Injection sites included muscles innervated by the vagus (X) and glossopharyngeal (IX) nerves, and the sites of expiratory activity in the caudal medulla and of inspiratory activity in the spinal cord at the C4 level. Labeling of vagal motoneurons resulting from fluorochrome injections into muscles innervated by X and IX nerves was always ipsilateral to the site of injection.

View Article and Find Full Text PDF