Introduction: Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g.
View Article and Find Full Text PDFSingle-cell multiomics provides comprehensive insights into gene regulatory networks, cellular diversity, and temporal dynamics. Here, we introduce nanoSPLITS (nanodroplet SPlitting for Linked-multimodal Investigations of Trace Samples), an integrated platform that enables global profiling of the transcriptome and proteome from same single cells via RNA sequencing and mass spectrometry-based proteomics, respectively. Benchmarking of nanoSPLITS demonstrates high measurement precision with deep proteomic and transcriptomic profiling of single-cells.
View Article and Find Full Text PDFWe report the development of an open-source Python application that provides quantitative and qualitative information from deconvoluted liquid-chromatography top-down mass spectrometry (LC-TDMS) data sets. This simple-to-use program allows users to search masses-of-interest across multiple LC-TDMS runs and provides visualization of their ion intensities and elution characteristics while quantifying their abundances relative to one another. Focusing on proteoform-rich histone proteins from the green microalga , we were able to quantify proteoform abundances across different growth conditions and replicates in minutes instead of hours typically needed for manual spreadsheet-based analysis.
View Article and Find Full Text PDFProteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine.
View Article and Find Full Text PDFUnderstanding of how soil organic matter (SOM) chemistry is altered in a changing climate has advanced considerably; however, most SOM components remain unidentified, impeding the ability to characterize a major fraction of organic matter and predict what types of molecules, and from which sources, will persist in soil. We present a novel approach to better characterize SOM extracts by integrating information from three types of analyses, and we deploy this method to characterize decaying root-detritus soil microcosms subjected to either drought or normal conditions. To observe broad differences in composition, we employed direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR MS).
View Article and Find Full Text PDFMetals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus .
View Article and Find Full Text PDFThe combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories.
View Article and Find Full Text PDFBiological organisms are multifaceted, intricate systems where slight perturbations can result in extensive changes in gene expression, protein abundance and/or activity, and metabolic flux. These changes occur at different timescales, spatially across cells of heterogeneous origins, and within single-cells. Hence, multimodal measurements at the smallest biological scales are necessary to capture dynamic changes in heterogeneous biological systems.
View Article and Find Full Text PDFBackground: The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses.
View Article and Find Full Text PDFMultiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection.
View Article and Find Full Text PDFSubtle variations in stable isotope ratios at natural abundance are challenging to measure but can yield critical insights into biological, physical, and geochemical processes. Well-established methods, particularly multicollector, gas-source, or plasma isotope ratio mass spectrometry, are the gold standard for stable isotope measurement, but inherent limitations in these approaches make them ill-suited to determining site-specific and multiply substituted isotopic abundances of all but a few compounds or to characterizing larger intact molecules. Fourier transform mass spectrometry, namely, Orbitrap mass spectrometry, has recently demonstrated the ability to measure natural abundance isotope ratios with chemically informative accuracy and precision.
View Article and Find Full Text PDFThe combination of native electrospray ionisation with top-down fragmentation in mass spectrometry allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and co-factors. While this approach is powerful, both native mass spectrometry and top-down mass spectrometry are not yet well standardised, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics (CTDP) initiated a study to develop and test protocols for native mass spectrometry combined with top-down fragmentation of proteins and protein complexes across eleven instruments in nine laboratories.
View Article and Find Full Text PDFDue to its speed, accuracy, and adaptability to various sample types, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a popular method to identify molecular isotope profiles from biological samples. Often MALDI-MS data do not include tandem MS fragmentation data, and thus the identification of compounds in samples requires external databases so that the accurate mass of detected signals can be matched to known molecular compounds. Most relevant MALDI-MS software tools developed to confirm compound identifications are focused on small molecules (.
View Article and Find Full Text PDFHerein, we assess the complementarity and complexity of data that can be detected within mammalian lipidome mass spectrometry imaging (MSI) matrix-assisted laser desorption ionization (MALDI) and nanospray desorption electrospray ionization (nano-DESI). We do so by employing 21 T Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) with absorption mode FT processing in both cases, allowing unmatched mass resolving power per unit time (≥613k at / 760, 1.536 s transients).
View Article and Find Full Text PDFMALDI imaging allows for the near-cellular profiling of proteoforms directly from microbial, plant, and mammalian samples. Despite detecting hundreds of proteoforms, identification of unknowns with only intact mass information remains a distinct challenge, even with high mass resolving power and mass accuracy. To this end, many supplementary methods have been used to create experimental databases for accurate mass matching, including bulk or spatially resolved bottom-up and/or top-down proteomics.
View Article and Find Full Text PDFConventional proteomic approaches measure the averaged signal from mixed cell populations or bulk tissues, leading to the dilution of signals arising from subpopulations of cells that might serve as important biomarkers. Recent developments in bottom-up proteomics have enabled spatial mapping of cellular heterogeneity in tissue microenvironments. However, bottom-up proteomics cannot unambiguously define and quantify proteoforms, which are intact (i.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2022
Ultrahigh resolution mass spectrometry (UHR-MS) coupled with direct infusion (DI) electrospray ionization offers a fast solution for accurate untargeted profiling. Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers have been shown to produce a wealth of insights into complex chemical systems because they enable unambiguous molecular formula assignment even if the vast majority of signals is of unknown identity. Interlaboratory comparisons are required to apply this type of instrumentation in quality control (for food industry or pharmaceuticals), large-scale environmental studies, or clinical diagnostics.
View Article and Find Full Text PDFProtein posttranslational modifications (PTMs) by O-GlcNAc globally rise during pressure-overload hypertrophy (POH). However, a major knowledge gap exists on the specific proteins undergoing changes in O-GlcNAc levels during POH primarily because this PTM is low abundance and easily lost during standard mass spectrometry (MS) conditions used for protein identification. Methodologies have emerged to enrich samples for O-GlcNAcylated proteins prior to MS analysis.
View Article and Find Full Text PDFCore histones including H2A, H2B, H3, and H4 are key modulators of cellular repair, transcription, and replication within eukaryotic cells, playing vital roles in the pathogenesis of disease and cellular responses to environmental stimuli. Traditional mass spectrometry (MS)-based bottom-up and top-down proteomics allows for the comprehensive identification of proteins and of post-translational modification (PTM) harboring proteoforms. However, these methodologies have difficulties preserving near-cellular spatial distributions because they typically require laser capture microdissection (LCM) and advanced sample preparation techniques.
View Article and Find Full Text PDFSingle-cell proteomics (scProteomics) promises to advance our understanding of cell functions within complex biological systems. However, a major challenge of current methods is their inability to identify and provide accurate quantitative information for low-abundance proteins. Herein, we describe an ion-mobility-enhanced mass spectrometry acquisition and peptide identification method, transferring identification based on FAIMS filtering (TIFF), to improve the sensitivity and accuracy of label-free scProteomics.
View Article and Find Full Text PDFNanospray desorption electrospray ionization mass spectrometry, a powerful ambient sampling and imaging technique, is herein coupled as an isolated source with 21 Tesla (21T) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS). Absorption-mode data, enabled by an external data acquisition system, is applied for improved mass resolution, accuracy, and dynamic range without compromising spectral acquisition rates. Isotopic fine structure (IFS) information is obtained from the ambient sampling of living and species, allowing for high confidence in molecular annotations with a resolution >830 k (at 825).
View Article and Find Full Text PDFThe mevalonate pathway plays a critical role in multiple cellular processes in both animals and plants. In plants, the products of this pathway impact growth and development, as well as the response to environmental stress. A forward genetic screen of Arabidopsis thaliana using Ca-imaging identified mevalonate kinase (MVK) as a critical component of plant purinergic signaling.
View Article and Find Full Text PDFProteins are the primary effectors of function in biology, and thus, complete knowledge of their structure and properties is fundamental to deciphering function in basic and translational research. The chemical diversity of proteins is expressed in their many proteoforms, which result from combinations of genetic polymorphisms, RNA splice variants, and posttranslational modifications. This knowledge is foundational for the biological complexes and networks that control biology yet remains largely unknown.
View Article and Find Full Text PDFGlobal quantification of protein abundances in single cells could provide direct information on cellular phenotypes and complement transcriptomics measurements. However, single-cell proteomics is still immature and confronts many technical challenges. Herein we describe a nested nanoPOTS (N2) chip to improve protein recovery, operation robustness, and processing throughput for isobaric-labeling-based scProteomics workflow.
View Article and Find Full Text PDF