In this study, a mimetic fluorescence nanosensor based on a molecularly imprinted polymer was designed for the detection of amygdalin (AMG). Its characteristics and functional performance were investigated and recorded using ATR-FTIR, AFM and porosity tests. This designed sensor is considered superior to other reported techniques due to its low material consumption during both manufacturing and operation as well as its low cost and desirable performance characteristics, such as short response time, high stability and an appropriate detection limit.
View Article and Find Full Text PDFAn efficient strategy utilizing μ-thin layer chromatography coupled with laser ablation inductively coupled plasma mass spectrometry (μ-TLC-LA-ICP-MS) based on an IIP (ion imprinted polymer) was developed for the speciation of inorganic arsenic [As(III) and As(V)]. The characterization of the fabricated IIP was performed applying Fourier-transform infrared spectroscopy (FTIR) and field emission scanning electron microscopy (FESEM). To prepare the thin layer chromatography plate, CaSO (as a binder) was incorporated with the IIP.
View Article and Find Full Text PDFIn the present study, we synthesized DABCOnium-based-Brønsted acidic ionic liquid-functionalized magnetic nanoparticles (FeO@(SU-DBC) NPs). Their structure was characterized using various morphological and physicochemical techniques such as SEM, powder-XRD, XPS, FTIR, VSM, and BET. The FeO@(SU-DBC) NPs have remarkable magnetic recovery, extensive colloidal stability, and excellent recyclability.
View Article and Find Full Text PDFIn this research, Hydroxyethyl cellulose - graphene oxide HEC-GO and HEC-GO/Fe-Zn mole ratio (2:1) nanocomposite as adsorbents were fabricated by crosslinking ethylene glycol dimethacrylate (EGDMA) to study the thermodynamic, kinetic and isotherm of doxycycline antibiotic adsorption. The morphology and structure of the adsorbents were analyzed by Fourier transform infrared spectroscopy (FT-IR), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FE-SEM- EDX), and Transmission electron microscopy (TEM). The adsorption behavior of doxycycline (DOX) was studied with different parameters including doxycycline concentration, pH, the dose of adsorbent (HEC-GO and HEC-GO/Fe-Zn, mole ratio (2:1)), contact time, and temperature.
View Article and Find Full Text PDFChemosphere
January 2023
Tetracycline (TC) as an antibiotic with high consumption causes the spread of contamination in an aqueous solution. In recent decades, antibiotics are the main cause of hindering the growth of microorganisms. Also, they are one of the important groups of pharmaceuticals with extensive usage in human and veterinary medicine.
View Article and Find Full Text PDFIn this project, the quetiapine drug was used as the template for synthesis of a molecular imprinted polymer (MIP). The polymerization approach for preparation of this composite was precipitation, where methacrylic acid (MAA), ethylene glycol dimethacrylate (EGDMA), and 2,2-azobisissobutyronitrile (AIBN) were used as the functional monomer, the cross-linker, and the initiator, respectively. Scanning electron microscopy (SEM) showed that the diameter of the nanoparticles is about 70 nm.
View Article and Find Full Text PDFA sensitive method based on liquid chromatography combined with a diode array detector was developed and validated to simultaneously determine tamoxifen, and its active metabolites N-desmethyltamoxifen, 4-hydroxytamoxifen, and endoxifen in human plasma samples. The green and sustainable vortex-assisted dispersive liquid-phase microextraction technique based on the natural hydrophobic deep eutectic solvent was used for the extraction and preconcentration of the analytes. Chemometrics and multivariate analysis were used to optimize the independent variables including the type and volume of deep eutectic solvent, extraction time, and ionic strength.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
October 2021
Gas flow-assisted dispersive liquid-phase microextraction based on deep eutectic solvent was used to determine parabens in personal care products such as mouthwash, lidocaine gel, aloe vera gel, and skin tonic. A homemade extraction device was innovated, in which by passing the stream of gas bubbles through the deep eutectic solvent a thin layer of the extraction phase is coated on the surface of the bubbles. The extraction is finally achieved when the bubbles are going up through the sample.
View Article and Find Full Text PDFAn ultrasensitive DNA electrochemical biosensor based on the carbon paste electrode (CPE) amplified with ZIF-8 and 1-butyl-3-methylimidazolium methanesulfonate (BMIMS) was fabricated in this research. The DNA/BMIMS/ZIF-8/CPE was used for the selective determination of a mitoxantrone anticancer drug in aqueous solution, resulting in a good catalytic effect and a powerful ability for determining mitoxantrone. Also, the interaction of the mitoxantrone anticancer drug with guanine bases of ds-DNA was used as a powerful strategy in the suggested biosensor, which was confirmed with docking investigation.
View Article and Find Full Text PDFFront Chem
August 2020
Measuring the concentration of anticancer drugs in pharmacological and biological samples is a very useful solution to investigate the effectiveness of these drugs in the chemotherapy process. A Pt,Pd-doped, NiO-decorated SWCNTs (Pt,Pd-NiO/SWCNTs) nanocomposite was synthesized using a one-pot procedure and combining chemical precipitation and ultrasonic sonochemical methods and subsequently characterized by TEM and EDS analysis methods. The analyses results showed the high purity and good distribution of elements and the ~10-nm diameter of the Pt,Pd-NiO nanoparticle decorated on the surface of the SWCNTs with a diameter of about 20-30 nm.
View Article and Find Full Text PDFIn the present research, a new biocompatible electrode is proposed as a rapid and direct glucose biosensing technique that improves on the deficiencies of fast clinical devices in laboratory investigations. Nano-ZnO (nanostructured zinc oxide) was sputtered by reactive direct current magnetron sputtering system on a precovered fluorinated tin oxide (FTO) conductive layer. Spin-coated polyvinyl alcohol (PVA) at optimized instrumental deposition conditions was applied to prepare the effective medium for glucose oxidase enzyme (GOx) covalent immobilization through cyanuric chloride (GOx/nano-ZnO/PVA/FTO).
View Article and Find Full Text PDFEnviron Monit Assess
April 2020
In this research, an efficient sorbent based on poly(β-cyclodextrin-ester)-functionalized silica-coated magnetic nanoparticles (MNPs-CDP) was prepared and used for magnetic solid-phase extraction of the malachite green (MG) and crystal violet (CV) from water samples prior to their determination by high-performance liquid chromatography-ultra violet detection (HPLC-UV). The synthesized nanoparticles were characterized by the field emission-scanning electron microscopy (FE-SEM) and Fourier transform infrared spectroscopy (FT-IR). Of course, the factors, which could influence the extraction efficiency like pH, sorbent amount, salt content, extraction time, desorption time, eluent type, and volume and sample volume, were optimized by response surface methodology.
View Article and Find Full Text PDFDue to the vitamin K sensitizing potential, the oxidized-isoform of vitamin K (vitamin K oxide, VKO), has been recently used for treating laser-induced purpura and hyperpigmentation in cosmetics. The objective of this study was to formulate VKO in nanoliposomes by using Box-Behnken experimental design to obtain an optimized formula with higher efficiency. The ratio of phospholipid to cholesterol (PC/CHO ratio), VKO concentration and sonication time in low, medium, and high levels were independent variables, while the percent of VKO entrapment efficiency (EE%) and vesicle size were selected as dependent variables.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
December 2019
N-doped TiO/SiO/FeO as a new magnetic photocatalyst that is active in visible light has been prepared by simple sol-gel method. The prepared samples were characterized by XRD, FESEM, EDX, TEM, BET, BJH, VSM, XPS, FT-IR, and DRS-UV/Vis analysis. The photocatalytic effect of synthesized samples on naproxen degradation was studied.
View Article and Find Full Text PDFIn this study, for the first time, salt-assisted liquid-liquid extraction was performed in a microchannel system. The proposed design is based on the increase of contact surface area between target analytes and extracting phase during the sample and extracting phase transfer in microchannel. In this method, first sample solution, extracting solvent, and salt were mixed by stirrer and simultaneously delivered into a microchannel using a syringe pump.
View Article and Find Full Text PDFWe developed an approach for the use of polyester dendrimer during the imprinting process to raise the number of recognized sites in the polymer matrix and improve its identification ability. Photoresponsive molecularly imprinted polymers were synthesized on modified magnetic nanoparticles involving polyester dendrimer which uses the reactivity between allyl glycidyl ether and acrylic acid for the high-yielding assembly by surface polymerization. The photoresponsive molecularly imprinted polymers were constructed using methylprednisoloneacetate as the template, water-soluble azobenzene involving 5-[(4, 3-(methacryloyloxy) phenyl) diazenyl] dihydroxy aniline as the novel functional monomer, and ethylene glycol dimethacrylate as the cross-linker.
View Article and Find Full Text PDFFew-layer graphene was synthesized by in situ catalytic carbon vapor deposition (CCVD) method, using reed as a carbon source and Ni, Cu, and Mg salts as the catalyst compounds. The synthesized graphene was also used for adsorption of VOCs. Furthermore, the effect of organic additives, sorbitol, and citric acid on catalyst compounds was investigated by temperature-programmed reduction analysis (H-TPR).
View Article and Find Full Text PDFThis study introduced a developed approach for dendritic β-cyclodextrin (β-CD) in order to obtain high sorption capacity. Synthetic strategy exploits the reactivity between acrylic acid and allyl glycidyl ether for high-yielding assembly via grafting on to the magnetic nanoparticles that are modified using 3-mercaptopropyltrimethoxysilane for various building branches and host-guest molecules of β-CD. The methodology has been applied for the preparation of a series of β-CD conjugated magnetic nanoparticles with dendrimers as a nano-sorbent for the extraction of methylprednisolone acetate.
View Article and Find Full Text PDFThe objective of this study was to identify the bioactive compounds of essential oil and evaluate the antibacterial activity of the essential oil extracted from Chenopodium album subsp. striatum against multidrug-resistant bacterial strains (MDR) which were isolated from clinical specimens by conventional methods. Furthermore, eight different Gram-negative and Gram-positive multidrug-resistant bacterial strains were used to investigate the antibacterial potential of the essential oil.
View Article and Find Full Text PDFThe primary aromatic amines (PAAs) are food contaminants which may exist in packaged food. Polyurethane (PU) adhesives which are used in flexible packaging are the main source of PAAs. It is the unreacted diisocyanates which in fact migrate to foodstuff and then hydrolyze to PAAs.
View Article and Find Full Text PDFThis research aims at elaborating on the construction of a novel nanostructured copper oxide (Nano-CuO) sputtered thin film on the conductive fluorinated-tin oxide (FTO) layer that was exploited to immobilize glucose oxidase (GOx) enzyme via chitosan for developing impedimetric glucose biosensing. The distinct Nano-CuO thin film was fabricated by reactive DC magnetron sputtering system at the optimized instrumental deposition conditions. The FTO/Nano-CuO/Chitosan/GOx biosensor containing several layers afforded excellent microenvironment for rapid biocatalytic reaction to glucose.
View Article and Find Full Text PDFThe aim of this study was to synthesize a highly efficient organic-inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy.
View Article and Find Full Text PDFA high-performance metal oxide polymer magnetite/polyethylene glycol nanocomposite was prepared and coated in situ on the surface of the optical fiber by sol-gel technology. The magnetite nanoparticles as nanofillers were synthesized by a coprecipitation method and bonded with polyethylene glycol as a polymer. The chemically bonded coating was evaluated for the headspace solid-phase microextraction of some environmentally important volatile organic compounds from aqueous samples in combination with gas chromatography and mass spectrometry.
View Article and Find Full Text PDFA solid-phase nanoextraction method has been developed for the extraction and preconcentration of polychlorinated biphenyls using carboxyl multiwalled carbon nanotubes as a solid nano-sorbent. Parameters affecting extraction efficiency such as sorbent amount, desorption solvent type and volume, extraction time, pH, and salt content have been studied. Under optimized conditions, the correlation coefficient was up to 0.
View Article and Find Full Text PDF