Publications by authors named "Parvez Ahammad"

Background: Theoretical models have emphasized systems-level abnormalities in major depressive disorder (MDD). For unbiased yet rigorous evaluations of pathophysiological mechanisms underlying MDD, it is critically important to develop data-driven approaches that harness whole-brain data to classify MDD and evaluate possible normalizing effects of targeted interventions. Here, using an experimental therapeutics approach coupled with machine learning, we investigated the effect of a pharmacological challenge aiming to enhance dopaminergic signaling on whole-brain response to reward-related stimuli in MDD.

View Article and Find Full Text PDF

Background: Insights from neuroimaging-based biomarker research have not yet translated into clinical practice. This translational gap may stem from a focus on diagnostic classification, rather than on prediction of transdiagnostic psychiatric symptom severity. Currently, no transdiagnostic, multimodal predictive models of symptom severity that include neurobiological characteristics have emerged.

View Article and Find Full Text PDF

Behavioral strategies employed for chemotaxis have been described across phyla, but the sensorimotor basis of this phenomenon has seldom been studied in naturalistic contexts. Here, we examine how signals experienced during free olfactory behaviors are processed by first-order olfactory sensory neurons (OSNs) of the Drosophila larva. We find that OSNs can act as differentiators that transiently normalize stimulus intensity-a property potentially derived from a combination of integral feedback and feed-forward regulation of olfactory transduction.

View Article and Find Full Text PDF

Background: Segmenting electron microscopy (EM) images of cellular and subcellular processes in the nervous system is a key step in many bioimaging pipelines involving classification and labeling of ultrastructures. However, fully automated techniques to segment images are often susceptible to noise and heterogeneity in EM images (e.g.

View Article and Find Full Text PDF

Digital reconstruction of neurons from microscope images is an important and challenging problem in neuroscience. In this paper, we propose a model-based method to tackle this problem. We first formulate a model structure, then develop an algorithm for computing it by carefully taking into account morphological characteristics of neurons, as well as the image properties under typical imaging protocols.

View Article and Find Full Text PDF