Publications by authors named "Parvathy Rajan"

Vitronectin (Vn) is a ligand for complement C9 and modulates its activity that favors bacterial growth and survival. At the same time, the anti-microbial activity of the heparin-binding region of human Vn has been documented. To understand these diverse and opposite functions of the protein, we have analyzed the interaction of caprine Vn with C9 in the homologous system.

View Article and Find Full Text PDF

Haemonchus contortus is an economically important parasite that survives the host defense system by modulating the immune response. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is secreted by the parasite and the host responds by producing anti-enzyme antibodies. The enzyme inhibits complement cascade, an arm of the innate immunity, by binding to complement C3.

View Article and Find Full Text PDF

Contactin-associated protein 2 (CASPR2) antibodies are originally associated with Morvan's syndrome and peripheral nerve hyper excitability. Our objective was to study retrospectively the clinical spectrum of CASPR2 antibody-positive patients in our hospital. This is a retrospective observational study.

View Article and Find Full Text PDF

Defending phagocyte generated oxidants is the key for survival of Salmonella Typhimurium (S. Typhimurium) inside the host. Met residues are highly prone to oxidation and convert into methionine sulfoxide (Met-SO).

View Article and Find Full Text PDF

Intraphagocytic survival of Salmonella Typhimurium (ST) depends (at least in part) upon its ability to repair oxidant-damaged macromolecules. Met residues either free or in protein bound form are highly susceptible to phagocyte-generated oxidants. Oxidation of Mets leads to Met-SO formation, consequently loss of protein functions that results in cell death.

View Article and Find Full Text PDF

This study reports on the structural basis of drug resistance targeting the katG gene in a multidrug-resistant Mycobacterium tuberculosis (MDR-TB) strain with two novel mutations (His276Met and Gln295His) in addition to the most commonly reported mutation (Ser315Thr). A structural bioinformatics approach was used to predict the structure of the mutant KatG enzyme (MT). Subsequent molecular dynamics and docking studies were performed to explain the mechanism of isoniazid (INH) resistance.

View Article and Find Full Text PDF