Publications by authors named "Parvathi M Devarakonda"

and most other parasites in the phylum Apicomplexa contain an apicoplast, a non-photosynthetic plastid organelle required for fatty acid, isoprenoid, iron-sulfur cluster, and heme synthesis. Perturbation of apicoplast function results in parasite death. Thus, parasite survival critically depends on two cellular processes: apicoplast division to ensure every daughter parasite inherits a single apicoplast, and trafficking of nuclear encoded proteins to the apicoplast.

View Article and Find Full Text PDF

Toxoplasma gondii contains an essential plastid organelle called the apicoplast that is necessary for fatty acid, isoprenoid, and heme synthesis. Perturbations affecting apicoplast function or inheritance lead to parasite death. The apicoplast is a single copy organelle and therefore must be divided so that each daughter parasite inherits an apicoplast during cell division.

View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease characterized by progressive and catastrophic heterotopic ossification (HO) of skeletal muscle and associated soft tissues. FOP is caused by dominantly acting mutations in the gene encoding the bone morphogenetic protein (BMP) type I receptor, ACVR1 (ALK2), the most prevalent of which results in an arginine to histidine substitution at position 206 (ACVR1[R206H]). The fundamental pathological consequence of FOP-causing ACVR1 receptor mutations is to enable activin A to initiate canonical BMP signaling in fibro-adipogenic progenitors (FAPs), which drives HO.

View Article and Find Full Text PDF

Toxoplasma gondii is an obligate intracellular parasite that relies on three distinct secretory organelles, the micronemes, rhoptries, and dense granules, for parasite survival and disease pathogenesis. Secretory proteins destined for these organelles are synthesized in the endoplasmic reticulum (ER) and sequentially trafficked through a highly polarized endomembrane network that consists of the Golgi and multiple post-Golgi compartments. Currently, little is known about how the parasite cytoskeleton controls the positioning of the organelles in this pathway, or how vesicular cargo is trafficked between organelles.

View Article and Find Full Text PDF

Background: Group I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription. We previously demonstrated that Pak1 and Pak2 function redundantly to promote skeletal myoblast differentiation during postnatal development and regeneration in mice. However, the roles of Pak1 and Pak2 in adult muscle homeostasis are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • * Current treatments, like the drug palovarotene, show promise in reducing the growth of problematic cells involved in this condition but are less effective compared to another treatment that blocks activin A.
  • * Even though palovarotene can reduce abnormal bone growth in young mice, it may also cause harmful side effects like joint overgrowth, emphasizing the difficulty of finding effective treatments before the skeletal system fully matures.
View Article and Find Full Text PDF

Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal-dominant disorder characterized by progressive and profoundly disabling heterotopic ossification (HO). Here we show that fibro/adipogenic progenitors (FAPs) are a major cell-of-origin of HO in an accurate genetic mouse model of FOP (Acvr1 ). Targeted expression of the disease-causing type I bone morphogenetic protein (BMP) receptor, ACVR1(R206H), to FAPs recapitulates the full spectrum of HO observed in FOP patients.

View Article and Find Full Text PDF