Given the patient to doctor ratio of 50,000:1 in low income and middle-income countries, there is a need for automated heart sound classification system that can screen the Phonocardiogram (PCG) records in real-time. This paper proposes deep neural network architectures such as a one-dimensional convolutional neural network (1D-CNN) and Feed-forward Neural Network (F-NN) for the classification of unsegmented phonocardiogram (PCG) signal. The research paper aims to automate the feature engineering and feature selection process used in the analysis of the PCG signal.
View Article and Find Full Text PDFBackground: The fetal electrocardiogram (FECG) signals are essential to monitor the health condition of the baby. Fetal heart rate (FHR) is commonly used for diagnosing certain abnormalities in the formation of the heart. Usually, non-invasive abdominal electrocardiogram (AbECG) signals are obtained by placing surface electrodes in the abdomen region of the pregnant woman.
View Article and Find Full Text PDF