Implementing diabetes surveillance systems is paramount to mitigate the risk of incurring substantial medical expenses. Currently, blood glucose is measured by minimally invasive methods, which involve extracting a small blood sample and transmitting it to a blood glucose meter. This method is deemed discomforting for individuals who are undergoing it.
View Article and Find Full Text PDFHeart strokes are a significant global health concern, profoundly affecting the wellbeing of the population. Many research endeavors have focused on developing predictive models for heart strokes using ML and DL techniques. Nevertheless, prior studies have often failed to bridge the gap between complex ML models and their interpretability in clinical contexts, leaving healthcare professionals hesitant to embrace them for critical decision-making.
View Article and Find Full Text PDFAmbient assisted technology (AAT), which has the potential to enhance patient care and productivity and save costs, has emerged as a strategic goal for developing e-healthcare in the future. However, since the healthcare sensor must be interconnected with other systems at different network tiers, distant enemies have additional options to attack. Data and resources integrated into the AAT are vulnerable to security risks that might compromise privacy, integrity, and availability.
View Article and Find Full Text PDFOver the past few years, a tremendous change has occurred in computer-aided diagnosis (CAD) technology. The evolution of numerous medical imaging techniques has enhanced the accuracy of the preliminary analysis of several diseases. Magnetic resonance imaging (MRI) is a prevalent technology extensively used in evaluating the progress of the spread of malignant tissues or abnormalities in the human body.
View Article and Find Full Text PDFCarcinoma is a primary source of morbidity in women globally, with metastatic disease accounting for most deaths. Its early discovery and diagnosis may significantly increase the odds of survival. Breast cancer imaging is critical for early identification, clinical staging, management choices, and treatment planning.
View Article and Find Full Text PDFDiagnostics (Basel)
November 2022
Due to an aging population, assisted-care options are required so that senior citizens may maintain their independence at home for a longer time and rely less on caretakers. Ambient Assisted Living (AAL) encourages the creation of solutions that can help to optimize the environment for senior citizens with assistance while greatly reducing their challenges. A framework based on the Internet of Medical Things (IoMT) is used in the current study for the implementation of AAL technology to help patients with Type-2 diabetes.
View Article and Find Full Text PDFLymph node metastasis in breast cancer may be accurately predicted using a DenseNet-169 model. However, the current system for identifying metastases in a lymph node is manual and tedious. A pathologist well-versed with the process of detection and characterization of lymph nodes goes through hours investigating histological slides.
View Article and Find Full Text PDFMachine Learning methods can play a key role in predicting the spread of respiratory infection with the help of predictive analytics. Machine Learning techniques help mine data to better estimate and predict the COVID-19 infection status. A Fine-tuned Ensemble Classification approach for predicting the death and cure rates of patients from infection using Machine Learning techniques has been proposed for different states of India.
View Article and Find Full Text PDFIn recent years in medical imaging technology, the advancement for medical diagnosis, the initial assessment of the ailment, and the abnormality have become challenging for radiologists. Magnetic resonance imaging is one such predominant technology used extensively for the initial evaluation of ailments. The primary goal is to mechanizean approach that can accurately assess the damaged region of the human brain throughan automated segmentation process that requires minimal training and can learn by itself from the previous experimental outcomes.
View Article and Find Full Text PDFDeep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices.
View Article and Find Full Text PDF