Publications by authors named "Parvaiz Ahmad Shiekh"

A state of hypoxia (lack of oxygen) persists in the initial and later phases of healing in cardiovascular diseases, which can alter the tissue's repair or regeneration, ultimately affecting the structure and functionality of the related organ. Consequently, this results in a cascade of events, leading to metabolic stress and the production of reactive oxygen species (ROS) and autophagy. This unwanted situation not only limits the oxygen supply to the needy tissues but also creates an inflammatory state, limiting the exchange of nutrients and other supplements.

View Article and Find Full Text PDF

Myocardial infarction (MI) can be tackled by implanting cardiac patches which provide mechanical support to the heart. However, most tissue-engineered scaffolds face difficulty in attenuating oxidative stress, maintaining mechanical stability, and regenerating damaged cardiomyocytes. Here, we fabricated elastic cryogels using polyurethane modified with antioxidant gallic acid in its backbone (PUGA) and further coated them with decellularized extracellular matrix (dECM) to improve adhesiveness, biocompatibility and hemocompatibility.

View Article and Find Full Text PDF

Diabetes is an endocrine illness involving numerous physiological systems. To understand the intricated pathophysiology and disease progression in diabetes, small animals are still the most relevant model systems, despite the availability and progression in numerous and research methods in recent years. In general, experimental diabetes is instigated mainly due to the effectiveness of animal models in illuminating disease etiology.

View Article and Find Full Text PDF

The periosteum is an indispensable part of the bone that nourishes the cortical bone and acts as a repertoire of osteoprogenitor cells. Periosteal damage as a result of traumatic injuries, infections, or surgical assistance in bone surgeries is often associated with a high incidence of delayed bone healing (union or nonunion) compounded with severe pain and a risk of a secondary fracture. Developing bioengineered functional periosteal substitutes is an indispensable approach to augment bone healing.

View Article and Find Full Text PDF

Diabetic peripheral neuropathy (DPN) is a long-term complication associated with nerve dysfunction and uncontrolled hyperglycemia. In spite of new drug discoveries, development of effective therapy is much needed to cure DPN. Here, we have developed a combinatorial approach to provide biochemical and electrical cues, considered to be important for nerve regeneration.

View Article and Find Full Text PDF