Publications by authors named "Parton W"

Rangelands are the dominant land use across a broad swath of central North America where they span a wide gradient, from <350 to >900 mm, in mean annual precipitation. Substantial efforts have examined temporal and spatial variation in aboveground net primary production (ANPP) to precipitation (PPT) across this gradient. In contrast, net secondary productivity (NSP, e.

View Article and Find Full Text PDF

Bioenergy with carbon capture and storage (BECCS) sits at the nexus of the climate and energy security. We evaluated trade-offs between scenarios that support climate stabilization (negative emissions and net climate benefit) or energy security (ethanol production). Our spatially explicit model indicates that the foregone climate benefit from abandoned cropland (opportunity cost) increased carbon emissions per unit of energy produced by 14-36%, making geologic carbon capture and storage necessary to achieve negative emissions from any given energy crop.

View Article and Find Full Text PDF

Nitrous oxide (NO) is an important greenhouse gas (GHG) that also contributes to depletion of ozone in the stratosphere. Agricultural soils account for about 60% of anthropogenic NO emissions. Most national GHG reporting to the United Nations Framework Convention on Climate Change assumes nitrogen (N) additions drive emissions during the growing season, but soil freezing and thawing during spring is also an important driver in cold climates.

View Article and Find Full Text PDF

In developing countries, agriculture generally represents a large fraction of GHG emissions reported in National Inventories, and emissions are typically estimated using Tier 1 IPCC guidelines. However, field data and locally adapted simulation models can improve the accuracy of IPCC estimations. In this study we aimed to quantify anthropogenic NO emissions from croplands of Argentina through field measurements, model simulations and IPCC guidelines.

View Article and Find Full Text PDF

Agriculture soils are responsible for a large proportion of global nitrous oxide (NO) emissions-a potent greenhouse gas and ozone depleting substance. Enhanced-efficiency nitrogen (N) fertilizers (EENFs) can reduce NO emission from N-fertilized soils, but their effect varies considerably due to a combination of factors, including climatic conditions, edaphic characteristics and management practices. In this study, we further developed the DayCent ecosystem model to simulate two EENFs: controlled-release N fertilizers (CRNFs) and nitrification inhibitors (NIs) and evaluated their NO mitigation potentials.

View Article and Find Full Text PDF

In an era of rapid global change, our ability to understand and predict Earth's natural systems is lagging behind our ability to monitor and measure changes in the biosphere. Bottlenecks to informing models with observations have reduced our capacity to fully exploit the growing volume and variety of available data. Here, we take a critical look at the information infrastructure that connects ecosystem modeling and measurement efforts, and propose a roadmap to community cyberinfrastructure development that can reduce the divisions between empirical research and modeling and accelerate the pace of discovery.

View Article and Find Full Text PDF

Rangeland ecosystems worldwide are characterized by a high degree of uncertainty in precipitation, both within and across years. Such uncertainty creates challenges for livestock managers seeking to match herbivore numbers with forage availability to prevent vegetation degradation and optimize livestock production. Here, we assess variation in annual large herbivore production (LHP, kg/ha) across multiple herbivore densities over a 78-yr period (1940-2018) in a semiarid rangeland ecosystem (shortgrass steppe of eastern Colorado, USA) that has experienced several phase changes in global-level sea surface temperature (SST) anomalies, as measured by the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO).

View Article and Find Full Text PDF

Background: Neurosurgery is a notoriously difficult career to enter and requires medical students to engage in extracurricular activities to demonstrate their commitment to the specialty. The National Undergraduate Neuroanatomy Competition (NUNC) was established in 2013 as a means for students to display this commitment as well as academic ability.

Methods: A bespoke 22-item questionnaire was designed to determine career outcomes and the role of competition attendance in job applications.

View Article and Find Full Text PDF

Wildfire is an essential earth-system process, impacting ecosystem processes and the carbon cycle. Forest fires are becoming more frequent and severe, yet gaps exist in the modeling of fire on vegetation and carbon dynamics. Strategies for reducing carbon dioxide (CO ) emissions from wildfires include increasing tree harvest, largely based on the public assumption that fires burn live forests to the ground, despite observations indicating that less than 5% of mature tree biomass is actually consumed.

View Article and Find Full Text PDF

Within medical education a reduction in curriculum time for subjects, such as anatomy puts pressure on educators to ensure the same learning outcomes are conveyed in less time. This has the potential to impact negatively on student experience. Near-peer teaching (NPT) is often praised as an effective revision tool, but its use as a frontline teaching resource remains unreported.

View Article and Find Full Text PDF
Article Synopsis
  • Undergraduates find neuroscience challenging, highlighting the need for better educational opportunities to foster future neuroscientists.
  • Through the National Undergraduate Neuroanatomy Competition, data and insights have been collected to improve neuroanatomy education and student engagement.
  • The implementation of a technology-enhanced learning platform and peer-assisted teaching compensates for fewer teaching hours and encourages student interest in neuroscience.
View Article and Find Full Text PDF

Background: Near-peer teaching is used in anatomy education because of its benefits to the learner, teacher and faculty members. Despite the range of reports focusing on the learner, the advantages for the teacher, which are thought to include communication skills, subject knowledge and employability, are only beginning to be explored.

Method: A questionnaire was distributed to the teachers involved in anatomy near-peer teaching at the University of Southampton and Brighton and Sussex Medical School (BSMS).

View Article and Find Full Text PDF

This article was migrated. The article was marked as recommended. Near-peer teaching (NPT) is becoming increasing popular in medical education.

View Article and Find Full Text PDF

Soil organic carbon (SOC) is an important and manageable property of soils that impacts on multiple ecosystem services through its effect on soil processes such as nitrogen (N) cycling and soil physical properties. There is considerable interest in increasing SOC concentration in agro-ecosystems worldwide. In some agro-ecosystems, increased SOC has been found to enhance the provision of ecosystem services such as the provision of food.

View Article and Find Full Text PDF

Multifactor experiments are often advocated as important for advancing terrestrial biosphere models (TBMs), yet to date, such models have only been tested against single-factor experiments. We applied 10 TBMs to the multifactor Prairie Heating and CO Enrichment (PHACE) experiment in Wyoming, USA. Our goals were to investigate how multifactor experiments can be used to constrain models and to identify a road map for model improvement.

View Article and Find Full Text PDF

Determining whether the terrestrial biosphere will be a source or sink of carbon (C) under a future climate of elevated CO (eCO ) and warming requires accurate quantification of gross primary production (GPP), the largest flux of C in the global C cycle. We evaluated 6 years (2007-2012) of flux-derived GPP data from the Prairie Heating and CO Enrichment (PHACE) experiment, situated in a grassland in Wyoming, USA. The GPP data were used to calibrate a light response model whose basic formulation has been successfully used in a variety of ecosystems.

View Article and Find Full Text PDF

It is important that clinicians are able to adequately assess their level of knowledge and competence in order to be safe practitioners of medicine. The medical literature contains numerous examples of poor self-assessment accuracy amongst medical students over a range of subjects however this ability in neuroanatomy has yet to be observed. Second year medical students attending neuroanatomy revision sessions at the University of Southampton and the competitors of the National Undergraduate Neuroanatomy Competition were asked to rate their level of knowledge in neuroanatomy.

View Article and Find Full Text PDF

Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4, and N2O) sink capacity of grasslands as well as other terrestrial ecosystems. Robust predictions of the net GHG sink strength of grasslands depend on how experimental N loads compare to projected Ndep rates, and how accurately the relationship between GHG fluxes and Ndep is characterized. A literature review revealed that the vast majority of experimental N loads were higher than levels these ecosystems are predicted to experience in the future.

View Article and Find Full Text PDF

Crop residues are potentially significant sources of feedstock for biofuel production in the United States. However, there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its functional benefits is considered a greater constraint than maintaining soil erosion losses to an acceptable level.

View Article and Find Full Text PDF

Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.

View Article and Find Full Text PDF

The Great Plains region of the United States is an agricultural production center for the global market and, as such, an important source of greenhouse gas (GHG) emissions. This article uses historical agricultural census data and ecosystem models to estimate the magnitude of annual GHG fluxes from all agricultural sources (e.g.

View Article and Find Full Text PDF

Livestock manure is applied to rangelands as an organic fertilizer to stimulate forage production, but the long-term impacts of this practice on soil carbon (C) and greenhouse gas (GHG) dynamics are poorly known. We collected soil samples from manured and nonmanured fields on commercial dairies and found that manure amendments increased soil C stocks by 19.0 ± 7.

View Article and Find Full Text PDF

We develop an integrated framework to determine and compare greenhouse gas (GHG) intensities and production costs of cellulosic ethanol derived from corn stover, switchgrass, and miscanthus grown on high and low quality soils for three representative counties in the Eastern United States. This information is critical for assessing the cost-effectiveness of utilizing cellulosic ethanol for mitigating GHG emissions and designing appropriate policy incentives to support cellulosic ethanol production nationwide. We find considerable variations in the GHG intensities and production costs of ethanol across feedstocks and locations mostly due to differences in yields and soil characteristics.

View Article and Find Full Text PDF

Eddy covariance nighttime fluxes are uncertain due to potential measurement biases. Many studies report eddy covariance nighttime flux lower than flux from extrapolated chamber measurements, despite corrections for low turbulence. We compared eddy covariance and chamber estimates of ecosystem respiration at the GLEES Ameriflux site over seven growing seasons under high turbulence [summer night mean friction velocity (u*) = 0.

View Article and Find Full Text PDF

Human population and economic growth are accelerating the demand for plant biomass to provide food, fuel, and fiber. The annual increment of biomass to meet these needs is quantified as net primary production (NPP). Here we show that an underlying assumption in some current models may lead to underestimates of the potential production from managed landscapes, particularly of bioenergy crops that have low nitrogen requirements.

View Article and Find Full Text PDF