Background: Dengue virus serotypes 1-4 (DENV-1-4) are the most common vector-borne viral pathogens of humans and the etiological agents of dengue fever and dengue hemorrhagic syndrome. A live-attenuated tetravalent dengue vaccine (TDV) developed by Takeda Vaccines has recently progressed to phase 3 safety and efficacy evaluation.
Methods: We analyzed the qualitative features of the neutralizing antibody (nAb) response induced in naive and DENV-immune individuals after TDV administration.
Trends Pharmacol Sci
September 2017
Adjuvants incorporated in prophylactic and/or therapeutic vaccine formulations impact vaccine efficacy by enhancing, modulating, and/or prolonging the immune response. In addition, they reduce antigen concentration and the number of immunizations required for protective efficacy, therefore contributing to making vaccines more cost effective. Our better understanding of the molecular mechanisms of immune recognition and protection has led research efforts to develop new adjuvants that are currently at various stages of development or clinical evaluation.
View Article and Find Full Text PDFBackground: The development of a vaccine against dengue faces unique challenges, including the complexity of the immune responses to the four antigenically distinct serotypes. Genome-wide transcriptional profiling provides insight into the pathways and molecular features that underlie responses to immune system stimulation, and may facilitate predictions of immune protection.
Methodology/principal Findings: In this study, we measured early transcriptional responses in the peripheral blood of cynomolgus macaques following vaccination with a live, attenuated tetravalent dengue vaccine candidate, TDV, which is based on a DENV-2 backbone.
Hand, foot, and mouth disease (HFMD) has recently emerged as a major public health concern across the Asian-Pacific region. Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) are the primary causative agents of HFMD, but other members of the Enterovirus A species, including Coxsackievirus A6 (CVA6), can cause disease. The lack of small animal models for these viruses have hampered the development of a licensed HFMD vaccine or antivirals.
View Article and Find Full Text PDFDengue is a significant threat to public health worldwide. Currently, there are no licensed vaccines available for dengue. Takeda Vaccines Inc.
View Article and Find Full Text PDFWe are developing a live-attenuated tetravalent dengue vaccine (TDV) candidate based on an attenuated dengue 2 virus (TDV-2) and 3 chimeric viruses containing the premembrane and envelope genes of dengue viruses (DENVs) -1, -3, and -4 expressed in the context of the attenuated TDV-2 genome (TDV-1, TDV-3, and TDV-4, respectively). In this study, we analyzed and characterized the CD8(+) T-cell response in flavivirus-naive human volunteers vaccinated with 2 doses of TDV 90 days apart via the subcutaneous or intradermal routes. Using peptide arrays and intracellular cytokine staining, we demonstrated that TDV elicits CD8(+) T cells targeting the nonstructural NS1, NS3, and NS5 proteins of TDV-2.
View Article and Find Full Text PDFDengue (DEN) is the most important mosquito-borne viral disease, with a major impact on global health and economics, caused by four serologically and distinct viruses termed DENV-1 to DENV-4. Currently, there is no licensed vaccine to prevent DEN. We have developed a live attenuated tetravalent DENV vaccine candidate (TDV) (formally known as DENVax) that has shown promise in preclinical and clinical studies and elicits neutralizing antibody responses to all four DENVs.
View Article and Find Full Text PDFBackground: Chikungunya virus (CHIKV) is a re-emerging arbovirus associated with febrile illness often accompanied by rash and arthralgia that may persist for several years. Outbreaks are associated with high morbidity and create a public health challenge for countries affected. Recent outbreaks have occurred in both Europe and the Americas, suggesting CHIKV may continue to spread.
View Article and Find Full Text PDFDengue viruses (DENVs) cause approximately 390 million cases of DENV infections annually and over 3 billion people worldwide are at risk of infection. No dengue vaccine is currently available nor is there an antiviral therapy for DENV infections. We have developed a tetravalent live-attenuated DENV vaccine tetravalent dengue vaccine (TDV) that consists of a molecularly characterized attenuated DENV-2 strain (TDV-2) and three chimeric viruses containing the pre-membrane and envelope genes of DENV-1, -3, and -4 expressed in the context of the TDV-2 genome.
View Article and Find Full Text PDFHuman enterovirus 71 (EV71) is a significant cause of morbidity and mortality from Hand, Foot and Mouth Disease (HFMD) and neurological complications, particularly in young children in the Asia-Pacific region. There are no vaccines or antiviral therapies currently available for prevention or treatment of HFMD caused by EV71. Therefore, the development of therapeutic and preventive strategies against HFMD is of growing importance.
View Article and Find Full Text PDFChikungunya virus (CHIKV), a mosquito-borne alphavirus, recently re-emerged in Africa and spread to islands in the Indian Ocean, the Indian subcontinent, and to South East Asia. Viremic travelers have also imported CHIKV to the Western hemisphere highlighting the importance of CHIKV in public health. In addition to the great burden of arthralgic disease, which can persist for months or years, epidemiologic studies have estimated case-fatality rates of ∼0.
View Article and Find Full Text PDFNon-polio enteroviruses, including enterovirus 71 (EV71), have caused severe and fatal cases of hand, foot and mouth disease (HFMD) in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN) receptor deficient) and AG129 (α/β, γ IFN receptor deficient) mice.
View Article and Find Full Text PDFDevelopment of an influenza vaccine that provides cross-protective immunity remains a challenge. Candidate vaccines based on a recombinant modified vaccinia Ankara (MVA) viral vector expressing antigens from influenza (MVA/Flu) viruses were constructed. A vaccine candidate, designated MVA/HA1/C13L/NP, that expresses the hemagglutinin from pandemic H1N1 (A/California/04/09) and the nucleoprotein (NP) from highly pathogenic H5N1 (A/Vietnam/1203/04) fused to a secretory signal sequence from vaccinia virus was highly protective.
View Article and Find Full Text PDFEmerging mosquito-borne alphavirus infections caused by chikungunya virus (CHIKV) or o'nyong-nyong virus (ONNV) are responsible for sporadic and sometimes explosive urban outbreaks. Currently, there is no licensed vaccine against either virus. We have developed a highly attenuated recombinant CHIKV candidate vaccine (CHIKV/IRES) that in preclinical studies was demonstrated to be safe, immunogenic and efficacious.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is the mosquito-borne alphavirus that is the etiologic agent of massive outbreaks of arthralgic febrile illness that recently affected millions of people in Africa and Asia. The only CHIKV vaccine that has been tested in humans, strain 181/clone 25, is a live-attenuated derivative of Southeast Asian human isolate strain AF15561. The vaccine was immunogenic in phase I and II clinical trials; however, it induced transient arthralgia in 8% of the vaccinees.
View Article and Find Full Text PDFFormulations of chimeric dengue vaccine (DENVax) viruses containing the pre-membrane (prM) and envelope (E) genes of serotypes 1-4 expressed in the context of the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity and efficacy in interferon receptor knock-out mice (AG129). Monovalent formulations were safe and elicited robust neutralizing antibody responses to the homologous virus and only limited cross-reactivity to other serotypes. A single dose of monovalent DENVax-1, -2, or -3 vaccine provided eighty or greater percent protection against both wild-type (wt) DENV-1 (Mochizuki strain) and DENV-2 (New Guinea C strain) challenge viruses.
View Article and Find Full Text PDFEvery year, Dengue virus (DENV) infects approximately 100 million people. There are currently several vaccines undergoing clinical studies, but most target the induction of neutralizing antibodies. Unfortunately, DENV infection can be enhanced by subneutralizing levels of antibodies that bind virions and deliver them to cells of the myeloid lineage, thereby increasing viral replication (termed antibody-dependent enhancement [ADE]).
View Article and Find Full Text PDFBackground: A lot of pathogens enter the body via the nasal route. The construction of non-toxic mutants of heat labile Escherichia coli enterotoxin (LT), which is a potent mucosal adjuvant, represents a major breakthrough for the development of mucosal vaccines.
Objective: This study was undertaken to critically evaluate the adjuvanticity of the mutant of LT (LTK63) on the cellular immune responses to intranasally co-administered recombinant measles virus nucleoprotein (rMVNP).
Chikungunya virus (CHIKV) is a reemerging mosquito-borne pathogen that has recently caused devastating urban epidemics of severe and sometimes chronic arthralgia. As with most other mosquito-borne viral diseases, control relies on reducing mosquito populations and their contact with people, which has been ineffective in most locations. Therefore, vaccines remain the best strategy to prevent most vector-borne diseases.
View Article and Find Full Text PDFChikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes explosive outbreaks of febrile illness associated with rash, and painful arthralgia. The CHIK vaccine strain 181/clone25 (181/25) developed by the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) was shown to be well-tolerated and highly immunogenic in phase I and II clinical trials although it induced transient arthralgia in some healthy adult volunteers. In an attempt to better understand the host factors that are involved in the attenuating phenotype of CHIK 181/25 vaccine virus we conducted studies in interferon (IFN)-compromised mice and also evaluated its immunogenic potential and protective capacity.
View Article and Find Full Text PDFConformational B-cell epitopes on the HCV E2 protein recognized by human antibodies were characterized by the use of a peptide mimotope named K1. K1 was identified by two HCV anti-E2 monoclonal antibodies (mAbs) following selection and purification of phage clones containing a 15-mer random peptide insert. Murine antisera to the mimotope K1 recognized the E2 protein.
View Article and Find Full Text PDFWe investigated the influence of antigen entrapment in PLA nanoparticles on the immune responses obtained after transcutaneous immunization. OVA-loaded PLA nanoparticles were prepared using a double emulsion process. Following application onto bare skin of mice in vivo, fluorescence-labeled nanoparticles were detected in the duct of the hair follicles indicating that the nanoparticles can penetrate the skin barrier through the hair follicles.
View Article and Find Full Text PDFImmunostimulatory ODN CpGs have extensively been tested as adjuvants and immunotherapeutics and hold a lot of promise for human use. In our studies we took advantage of their negative charge to study their biological activities after being complexed with carbon nanotubes, a novel vector for vaccine delivery and Tat protein of HIV, a target protein for therapeutic or prophylactic intervention. In the case of carbon nanotubes, ODN CpGs were able to form stable complexes based on charge interaction and exert increased immunostimulatory activity in vitro.
View Article and Find Full Text PDFTranscutaneous immunization (TCI) capitalizes on the accessibility and immunocompetence of the skin, elicits protective immunity, simplifies vaccine delivery, and may be particularly advantageous when frequent boosting is required. In this study we examined the potential of TCI to boost preexisting immune responses to diphtheria in mice. The cross-reacting material (CRM(197)) of diphtheria toxin was used as the boosting antigen and was administered alone or together with either one of two commonly used mucosal adjuvants, cholera toxin (CT) and a partially detoxified mutant of heat-labile enterotoxin of Escherichia coli (LTR72).
View Article and Find Full Text PDFOver the last few years, considerable advances have been made in the field of nanotechnology. The advent of carbon nanotube functionalization has paved the way for their potential application as a delivery system of diverse molecules such as peptides, proteins, plasmid DNA, and synthetic oligodeoxynucleotides. This opens new therapeutic and preventive opportunities to combat diseases.
View Article and Find Full Text PDF