This paper delves into an investigation of the solubility characteristics of L-tryptophan within binary solvent systems containing aqueous acetonitrile. The primary emphasis of the study revolves around assessments based on mole fractions. The study utilizes these solubility values to assess thermodynamic constraints, including solution entropies and solution transfer free energetics.
View Article and Find Full Text PDFA Co(III) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) (Scheme-1) having the molecular formula CoQ (Scheme-2) was prepared and characterized by elemental analysis, FTIR spectroscopy, UV-vis spectroscopy, fluorescence spectroscopy, and mass spectrometry. In the absence of a single crystal, the energy-optimized molecular structure of CoQ was determined by employing computational methods that was validated using spectroscopic evidences, elemental analysis, and mass spectrometry data. The electrochemical properties of the complex were analyzed using cyclic voltammetry and indicate a substantial modification of the electrochemical properties of the parent amino-hydroxy-9,10-anthraquinone.
View Article and Find Full Text PDFIn this study we estimated the solubilities of glycine, D,L-alanine, D,L-nor-valine and D,L-serine in aqueous mixtures of potassium sulfate (KSO) at 298.15 K using analytical 'gravimetric method'. The experimental solubilities of homologous series of amino acids in aqueous KSO mixture were discussed in terms of relative solubility, salting-in and salting-out effect by evaluating the influential constants.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2015
The X-ray diffraction and spectroscopic properties of 1-amino-4-hydroxy-9,10-anthraquinone (1-AHAQ), a simple analogue of anthracycline chemotherapeutic drugs were studied by adopting experimental and computational methods. The optimized geometrical parameters obtained from computational methods were compared with the results of X-ray diffraction analysis and the two were found to be in reasonably good agreement. X-ray diffraction study, Density Functional Theory (DFT) and natural bond orbital (NBO) analysis indicated two types of hydrogen bonds in the molecule.
View Article and Find Full Text PDFDalton Trans
March 2015
A 1 : 2 copper(II) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) having the molecular formula CuQ2 was prepared and characterized by elemental analysis, NMR, FTIR, UV-vis and mass spectroscopy. The powder diffraction of the solid complex, magnetic susceptibility and ESR spectra were also recorded. The presence of the planar anthraquinone moiety in the complex makes it extremely difficult to obtain a single crystal suitable for X-ray diffraction studies.
View Article and Find Full Text PDFCytotoxic studies using an azo compound HPAN and its Co(II) complex were carried out on non-small lung epithelium carcinoma (A549) cells and peripheral blood mononuclear (PBM) cells. The results obtained suggest that the Co(II) complex is much less toxic toward both cell lines and the decreased toxicity due to the complex was more pronounced with carcinoma A549 cells. An attempt was made to correlate the findings related to cytotoxicity with the interaction of the compounds with DNA using calf thymus DNA as the target.
View Article and Find Full Text PDFCopper(II) forms a complex with sodium 1,4-dihydroxy-9,10-anthraquinone-2-sulphonate (sodium quinizarin-2-sulphonate, NaQSH(2)), an analogue of the core unit of anthracycline antibiotics used in the treatment of cancer. The 1:2 metal-ligand complex is formed in aqueous solution at neutral and acidic pH while in alkaline pH both 1:1 and 1:2 species are formed. The effective stability constant of the 1:2 metal-ligand complex is 9.
View Article and Find Full Text PDF