In this investigation, we formulate and analyse a stochastic epidemic model using the continuous-time Markov chain model for the propagation of a vector-borne cassava mosaic disease in a single population. The stochastic model is based upon a pre-existing deterministic plant-vector-virus model. To see how demographic stochasticity affects the vector-borne cassava mosaic disease dynamics, we compare the disease dynamics of both deterministic and stochastic models through disease extinction process.
View Article and Find Full Text PDFTopological insulators constitute a new phase of matter protected by symmetries. Time-reversal symmetry protects strong topological insulators of the Z class, which possess an odd number of metallic surface states with dispersion of a Dirac cone. Topological crystalline insulators are merely protected by individual crystal symmetries and exist for an even number of Dirac cones.
View Article and Find Full Text PDFAim: The study was undertaken to detect the clinical signs, postmortem lesions of embryonated duck plague (DP) infected eggs, and histopathological changes of chorioallantoic membrane (CAM) in non-descriptive ducks of West Bengal with special reference to standardize nested polymerase chain reaction (PCR).
Materials And Methods: After postmortem of suspected carcasses, samples were collected for virus isolation and identification through specific pathogen free (Khaki Campbell) embryonated duck eggs. PCR was also done as confirmatory test after doing postmortem of duck embryos.
The topological properties of lead-tin chalcogenide topological crystalline insulators can be widely tuned by temperature and composition. It is shown that bulk Bi doping of epitaxial Pb Sn Te (111) films induces a giant Rashba splitting at the surface that can be tuned by the doping level. Tight binding calculations identify their origin as Fermi level pinning by trap states at the surface.
View Article and Find Full Text PDFTrilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on-off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on-off ratio of 10(4) by opening a transport gap in Bernal-stacked trilayer graphene.
View Article and Find Full Text PDF