Publications by authors named "Partha Maity"

We studied the intersystem crossing (ISC) property of red-light absorbing heavy atom-free dihydronaphtho[]-fused Bodipy derivatives (with phenyl group attached at the lower rim via ethylene bridge, taking constrained geometry, i.e., and the half-oxidized product ) and dispiroflourene[]-fused Bodipy () that have a twisted π-conjugated framework.

View Article and Find Full Text PDF

Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu(Nap)(PPh)H (hereafter CuNap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Colloidal quantum dots (CQDs) are promising materials for short-wave infrared photodetectors but traditional lead and mercury systems are limited due to toxicity issues.
  • InSb CQDs present an eco-friendly alternative with tunable bandgaps, but their current synthesis methods are complex and hinder their use.
  • A new one-pot synthesis approach using commercial precursors allows for easier production of high-quality InSb CQDs, enabling better performance and efficient carrier dynamics, expanding their application potential in the SWIR range.
View Article and Find Full Text PDF

InAs colloidal quantum dots (CQDs) have emerged as candidate lead- and mercury-free solution-processed semiconductors for infrared technology due to their appropriate bulk bandgap, which can be tuned by quantum confinement, and promising charge-carrier transport properties. However, the lack of suitable arsenic precursors and readily accessible synthesis conditions have limited InAs CQDs to smaller sizes (<7 nm), with bandgaps largely restricted to <1400 nm in the near-infrared spectral window. Conventional InAs CQD synthesis requires highly reactive, hazardous arsenic precursors, which are commercially scarce, making the synthesis hard to control and study.

View Article and Find Full Text PDF

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (Φ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (Φ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.

View Article and Find Full Text PDF

Zero-dimensional (0D) scintillation materials have drawn tremendous attention due to their inherent advantages in the fabrication of flexible high-energy radiation scintillation screens by solution processes. Although considerable progress has been made in the development of 0D scintillators, such as the current leading lead-halide perovskite nanocrystals and quantum dots, challenges still persist, including potential issues with self-absorption, air stability, and eco-friendliness. Here, we present a strategy to overcome those limitations by synthesis and self-assembly of a new class of scintillators based on metal nanoclusters.

View Article and Find Full Text PDF

Studying the charge dynamics of perovskite materials is a crucial step to understand the outstanding performance of these materials in various fields. Herein, we utilize transient absorption in the mid-infrared region, where solely electron signatures in the conduction bands are monitored without external contributions from other dynamical species. Within the measured range of 4000 nm to 6000 nm (2500-1666 cm), the recombination and the trapping processes of the excited carriers could be easily monitored.

View Article and Find Full Text PDF

Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, to form the CS state, not the CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of CS → S. The electron donor Rho (lactam form) is attached three σ bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (NDI*), and then to form the CS state.

View Article and Find Full Text PDF

Two-dimensional (2D) lead halide perovskites (LHPs) have garnered incredible attention thanks to their exciting optoelectronic properties and intrinsic strong quantum confinement effect. Herein, we carefully investigate and decipher the charge carrier dynamics at the interface between CsPbBr multiple quantum wells (MQWs) as the photoactive layer and TiO and Spiro-OMeTAD as electron and hole transporting materials, respectively. The fabricated MQWs comprise three monolayers of CsPbBr separated by 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) as barriers.

View Article and Find Full Text PDF

Bright-red light-emitting diodes (LEDs) with a narrow emission line width that emit between 620 and 635 nm are needed to meet the latest industry color standard for wide color gamut displays, Rec. 2020. CsPbI perovskite quantum dots (QDs) are one of the few known materials that are ideally suited to meet these criteria.

View Article and Find Full Text PDF

Activation of aryl chlorides in cross-coupling reactions is a long-standing challenge in organic synthesis that is of great interest to industry. Ultrasmall (<3 nm), atomically precise nanoclusters (NCs) are considered one of the most promising catalysts due to their high surface area and unsaturated active sites. Herein, we introduce a copper nanocluster-based catalyst, [Cu(SBu)SClH] (CuNC) that enables C-N bond-forming reactions of aryl chlorides under visible-light irradiation at room temperature.

View Article and Find Full Text PDF

In this report, we study the hot carrier cooling mechanism of the CsBiI single crystal by using femtosecond transient reflectance (fs-TR) spectroscopy. We find an unusual slow hot carrier cooling associated with longitudinal optical (LO) and coherent longitudinal acoustic phonons (CLAPs) emission during the deexcitation of the hot carriers. We posit the interplay between the hot-carriers and the LO and CLA phonons in subpicosecond to subnanosecond time scales, respectively, by analyzing the TR kinetics upon perturbation with excess energy.

View Article and Find Full Text PDF

Compared to crystalline carbon nitride, the performance of disordered carbon nitride (d-CN) as a hydrogen production photocatalyst is extremely poor. Owing to its disordered atomic orientation, it is prone to numerous defect states. These energy states are potential sites for trapping and recombination of photogenerated charge carriers.

View Article and Find Full Text PDF

Photo-thermal catalysis has recently emerged as a promising alternative to overcome the limitations of traditional photocatalysis. Despite its potential, most of the photo-thermal systems still lack adequate selectivity patterns and appropriate analysis of the underlying reaction pathways, thus hampering a wide implementation. Herein, a novel photocatalyst based on Pd nanoparticles (NPs) supported on barium titanate (BTO) was prepared for the selective photo-thermal reduction of CO and displayed catalytic rates of up to 8.

View Article and Find Full Text PDF

Hot charge carriers (HC) are photoexcited electrons and holes that exist in nonequilibrium high-energy states of photoactive materials. Prolonged cooling time and rapid extraction are the current challenges for the development of future innovative HC-based optoelectronic devices, such as HC solar cells (HCSCs), hot energy transistors (HETs), HC photocatalytic reactors, and lasing devices. Based on a thorough analysis of the basic mechanisms of HC generation, thermalization, and cooling dynamics, this review outlines the various possible strategies to delay the HC cooling as well as to speed up their extraction.

View Article and Find Full Text PDF

In order to study the effect of mutual orientation of the chromophores in compact electron donor-acceptor dyads on the spin-orbit charge transfer intersystem crossing (SOCT-ISC), we prepared naphthalimide ()-pyrene () compact electron donor-acceptor dyads, in which pyrene acts as an electron donor and is an electron acceptor. The connection of the two units is at the 4-C and 3-C positions of the unit and the 1-position of the pyrene moiety for dyads and , respectively. A charge transfer absorption band was observed for both dyads in the UV-vis absorption spectra.

View Article and Find Full Text PDF

Hot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e.

View Article and Find Full Text PDF

The photophysical properties of a heavy atom-free BODIPY derivative with a twisted π-conjugated framework were studied. Efficient intersystem crossing (ISC quantum yield: 56%) and an exceptionally long-lived triplet state were observed (4.5 ms in solid polymer film matrix and 197.

View Article and Find Full Text PDF

Semiconductor heterostructures of multiple quantum wells (MQWs) have major applications in optoelectronics. However, for halide perovskites-the leading class of emerging semiconductors-building a variety of bandgap alignments (i.e.

View Article and Find Full Text PDF

Due to their atomically precise structure, photoluminescent copper nanoclusters (Cu NCs) have emerged as promising materials in both fundamental studies and technological applications, such as bio-imaging, cell labeling, phototherapy, and photo-activated catalysis. In this work, a facile strategy is reported for the synthesis of a novel Cu NCs coprotected by thiolate and phosphine ligands, formulated as [Cu (PPh ) (PET) ] , which exhibits bright emission in the near-infrared (NIR) region (≈720 nm) and crystallization-induced emission enhancement (CIEE) phenomenon. Single crystal X-ray crystallography shows that the NC possesses an extraordinary distorted trigonal antiprismatic Cu core and a, unique among metal clusters, "tri-blade fan"-like structure.

View Article and Find Full Text PDF

The emerging promise of few-atom metal catalysts has driven the need for developing metal nanoclusters (NCs) with ultrasmall core size. However, the preparation of metal NCs with single-digit metallic atoms and atomic precision is a major challenge for materials chemists, particularly for Ag, where the structure of such NCs remains unknown. In this study, we developed a shape-controlled synthesis strategy based on an isomeric dithiol ligand to yield the smallest crystallized Ag NC to date: [Ag(1,2-BDT)] (1,2-BDT = 1,2-benzenedithiolate).

View Article and Find Full Text PDF

Recently, halide perovskites have emerged as a promising material for device applications. Lead-based perovskites have been widely explored, while investigation of the optical properties of lead-free perovskites remains limited. Lead-halide perovskite single crystals have shown light-induced positive photoconductivity, and as lead-free perovskites are optically active, they are expected to demonstrate similar properties.

View Article and Find Full Text PDF

The one-step synthesis and characterization of a new and robust titanium-based metal-organic framework, ACM-1, is reported. In this structure, which is based on infinite Ti-O chains and 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl) tetrabenzoic acid as a photosensitizer ligand, the combination of highly mobile photogenerated electrons and a strong hole localization at the organic linker results in large charge-separation lifetimes. The suitable energies for band gap and conduction band minimum (CBM) offer great potential for a wide range of photocatalytic reactions, from hydrogen evolution to the selective oxidation of organic substrates.

View Article and Find Full Text PDF

Optical wireless communication (OWC) using the ultra-broad spectrum of the visible-to-ultraviolet (UV) wavelength region remains a vital field of research for mitigating the saturated bandwidth of radio-frequency (RF) communication. However, the lack of an efficient UV photodetection methodology hinders the development of UV-based communication. The key technological impediment is related to the low UV-photon absorption in existing silicon photodetectors, which offer low-cost and mature platforms.

View Article and Find Full Text PDF

Semiconductor colloidal metal chalcogenides (II-VI) in the form of quantum dots (QDs) and different heterostructures (core/shell, alloys, etc.) are of extensive interest in scientific research for both a fundamental understanding and technological applications because of their quantized size and different optical properties; however, due to their small size, the exciton (bound electron and hole) experiences a strong Coulombic attraction, which has a remarkable impact on the charge separation and photophysical properties of QDs. Thus, to achieve an efficient charge separation, numerous attempts have been made via the formation of different heterostructures, QD/molecular adsorbate (either organic or inorganic) assemblies, etc.

View Article and Find Full Text PDF