HLA typing and matching have been crucial in kidney transplantation, but methods for assessing tissue histocompatibility have advanced significantly. While serological-level HLA typing remains common, it captures only a small fraction of true HLA variation, and molecular matching is already replacing traditional HLA matching. Recent studies have expanded our understanding of genetic tissue compatibility beyond HLA loci.
View Article and Find Full Text PDFFemale infertility is a common and complex health problem affecting millions of women worldwide. While multiple factors can contribute to this condition, the underlying cause remains elusive in up to 15%-30% of affected individuals. In our large genome-wide association study (GWAS) of 22,849 women with infertility and 198,989 control individuals from the Finnish population cohort FinnGen, we unveil a landscape of genetic factors associated with the disorder.
View Article and Find Full Text PDFAllelic, gene presence/absence, and gene-copy number variations in the KIR genes encoding Natural Killer (NK) cell surface receptors have been reported to be associated in case-control studies with infectious and autoimmune diseases, and relapse after stem cell transplantation. To understand more comprehensively the role of KIR gene presence/absence variation and HLA-KIR interactions in disease susceptibility, we imputed from genome SNP data the presence and absence of 10 KIR genes in the FinnGen cohort. The cohort consists of 352,783 Finns with extensive phenotypes from the national health registries.
View Article and Find Full Text PDFNumerous studies have shown that a healthy reproductive tract microbiota is crucial for successful reproduction and that its composition is influenced by various environmental and host factors. However, it is not known whether the reproductive microbiota is also shaped by the major histocompatibility complex (MHC), a family of genes essential to differentiate 'self' from 'non-self' peptides to initiate an adaptive immune response. We tested the association between the follicular fluid microbiome and MHC genes in 27 women.
View Article and Find Full Text PDFIn addition to the classical HLA genes, the major histocompatibility complex (MHC) harbors a high number of other polymorphic genes with less established roles in disease associations and transplantation matching. To facilitate studies of the non-classical and non-HLA genes in large patient and biobank cohorts, we trained imputation models for MICA, MICB, HLA-E, HLA-F and HLA-G alleles on genome SNP array data. We show, using both population-specific and multi-population 1000 Genomes references, that the alleles of these genes can be accurately imputed for screening and research purposes.
View Article and Find Full Text PDFBackground: Deep learning methods are revolutionizing natural science. In this study, we aim to apply such techniques to develop blood type prediction models based on cheap to analyze and easily scalable screening array genotyping platforms.
Methods: Combining existing blood types from blood banks and imputed screening array genotypes for ~111,000 Danish and 1168 Finnish blood donors, we used deep learning techniques to train and validate blood type prediction models for 36 antigens in 15 blood group systems.
The high prevalence of autoimmune hypothyroidism (AIHT) - more than 5% in human populations - provides a unique opportunity to unlock the most complete picture to date of genetic loci that underlie systemic and organ-specific autoimmunity. Using a meta-analysis of 81,718 AIHT cases in FinnGen and the UK Biobank, we dissect associations along axes of thyroid dysfunction and autoimmunity. This largest-to-date scan of hypothyroidism identifies 418 independent associations (p < 5×10), more than half of which have not previously been documented in thyroid disease.
View Article and Find Full Text PDFBackground And Hypothesis: Kidney grafts from donors who died of stroke and related traits have worse outcomes relative to grafts from both living donors and those who died of other causes. We hypothesise that deceased donors, particularly those who died of stroke, have elevated polygenic burden for cerebrovascular traits. We further hypothesise that this donor polygenic burden is associated with inferior graft outcomes in the recipient.
View Article and Find Full Text PDFLichen planus (LP) is a T-cell-mediated inflammatory disease affecting squamous epithelia in many parts of the body, most often the skin and oral mucosa. Cutaneous LP is usually transient and oral LP (OLP) is most often chronic, so we performed a large-scale genetic and epidemiological study of LP to address whether the oral and non-oral subgroups have shared or distinct underlying pathologies and their overlap with autoimmune disease. Using lifelong records covering diagnoses, procedures, and clinic identity from 473,580 individuals in the FinnGen study, genome-wide association analyses were conducted on carefully constructed subcategories of OLP (n = 3,323) and non-oral LP (n = 4,356) and on the combined group.
View Article and Find Full Text PDFBackground: A genetic polymorphism, rs2204985, has been reported to be associated with the diversity of T-cell antigen receptor repertoire and TREC levels, reflecting the function of the thymus. As the thymus function can be assumed to be an important factor regulating the outcome of stem cell transplantation (SCT), it was of great interest that rs2204985 showed a genetic association to disease-free and overall survival in a German SCT donor cohort. Tools to predict the outcome of SCT more accurately would help in risk assessment and patient safety.
View Article and Find Full Text PDFA key element for successful blood transfusion is compatibility of the patient and donor red blood cell (RBC) antigens. Precise antigen matching reduces the risk for immunization and other adverse transfusion outcomes. RBC antigens are encoded by specific genes, which allows developing computational methods for determining antigens from genomic data.
View Article and Find Full Text PDFHealth questionnaires and donation criteria result in accumulation of highly selected individuals in a blood donor population. To understand better the usefulness of a blood donor-based biobank in personalised disease-associated genetic studies, and for possible personalised blood donation policies, we evaluated the occurrence and distributions of common and rare disease-associated genetic variants in Finnish Blood Service Biobank. We analysed among 31,880 blood donors the occurrence and geographical distribution of (i) 53 rare Finnish-enriched disease-associated variants, (ii) mutations assumed to influence blood donation: four Bernard-Soulier syndrome and two hemochromatosis mutations, (iii) type I diabetes risk genotype HLA-DQ2/DQ8.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination.
View Article and Find Full Text PDFImaging flow cytometry (IFC) combines flow cytometry with microscopy, allowing rapid characterization of cellular and molecular properties via high-throughput single-cell fluorescent imaging. However, fluorescent labeling is costly and time-consuming. We present a computational method called DeepIFC based on the Inception U-Net neural network architecture, able to generate fluorescent marker images and learn morphological features from IFC brightfield and darkfield images.
View Article and Find Full Text PDFGenetic variation in the MICA and MICB genes located within the major histocompatibility complex region has been reported to be associated with transplantation outcome and susceptibility to autoimmune diseases and infections. Only limited data of polymorphism in these genes in different populations are available. We here report allelic variation at 2-field resolution and the haplotypes of the MICA and MICB genes in Finland (n = 1032 individuals), a north European population with historical bottleneck and founder effects.
View Article and Find Full Text PDFIntroduction: The genomic mismatch level between donor and recipient may be associated with the risk of rejection and graft survival. We determined the association of genome-level matching with acute rejection in deceased-donor kidney transplantation.
Methods: The study cohort consists of 1025 recipient-donor pairs transplanted in a single center from 2007 to 2017 in Helsinki.
Varying HLA allele-specific expression levels are associated with human diseases, such as graft versus host disease (GvHD) in hematopoietic stem cell transplantation (HSCT), cytotoxic T cell response and viral load in HIV infection, and the risk of Crohn's disease. Only recently, RNA-based next generation sequencing (NGS) methodologies with accompanying bioinformatics tools have emerged to quantify HLA allele-specific expression replacing the quantitative PCR (qPCR) -based methods. These novel NGS approaches enable the systematic analysis of the HLA allele-specific expression changes between individuals and between normal and disease phenotypes.
View Article and Find Full Text PDFBackground: Allogeneic therapeutic cells may be rejected if they express HLA alleles not found in the recipient. As finding cell donors with a full HLA match to a recipient requires vast donor pools, the use of HLA homozygous cells has been suggested as an alternative. HLA homozygous cells should be well tolerated by those who carry at least one copy of donor HLA alleles.
View Article and Find Full Text PDFAllogeneic hematopoietic stem cell transplantation (HSCT) provides patients with severe hematologic disease a well-established potential for curation. Incorporation of germline analyses in the workup of HSCT patients is not a common practice. Recognizing rare harmful germline variants may however affect patients' pre-transplantation care, choice of the stem cell donor, and complication risks.
View Article and Find Full Text PDFInfertility is assumed to arise exclusively from male- and female-dependent pathological factors. However, recent studies have indicated that reproductive failure may also result from the reproductive incompatibility of the partners. Selection against such incompatibilities likely occurs via female-derived reproductive secretions, including follicular fluid (FF), that mediate gamete-level mate choice towards the sperm of specific males.
View Article and Find Full Text PDF