Publications by authors named "Parsian Katal Mohseni"

Semiconductor p-n junctions are essential building blocks of electronic and optoelectronic devices. Although vertical p-n junction structures can be formed readily by growing in sequence, lateral p-n junctions normal to surface direction can only be formed on specially patterned substrates or by post-growth implantation of one type of dopant while protecting the oppositely doped side. In this study, we report the monolithic formation of lateral p-n junctions in GaAs nanowires (NWs) on a planar substrate sequentially through the Au-assisted vapor-liquid-solid selective lateral epitaxy using metalorganic chemical vapor deposition.

View Article and Find Full Text PDF

Intentional and unintentional doping in semiconductor nanowires undoubtedly have significant impact on the device performance. However, spatially resolved precise determination of dopant concentration is challenging due to insufficient sensitivity and resolution of conventional techniques. In this paper, quantitative 3D distribution of Si and Zn dopants in planar GaAs nanowires and their interface with AlGaAs film underneath are obtained by using a unique atom probe tomography technique, providing critical insights for the growth and potential applications of these nanowires.

View Article and Find Full Text PDF

The effect of diameter variation on electrical characteristics of long-channel InAs nanowire metal-oxide-semiconductor field-effect transistors is experimentally investigated. For a range of nanowire diameters, in which significant band gap changes are observed due to size quantization, the Schottky barrier heights between source/drain metal contacts and the semiconducting nanowire channel are extracted considering both thermionic emission and thermally assisted tunneling. Nanowires as small as 10 nm in diameter were used in device geometry in this context.

View Article and Find Full Text PDF

One-dimensional crystal growth allows the epitaxial integration of compound semiconductors on silicon (Si), as the large lattice-mismatch strain arising from heterointerfaces can be laterally relieved. Here, we report the direct heteroepitaxial growth of a mixed anion ternary InAsyP1-y nanowire array across an entire 2 in. Si wafer with unprecedented spatial, structural, and special uniformity across the entire 2 in.

View Article and Find Full Text PDF