Publications by authors named "Parsa M Nafisi"

Article Synopsis
  • DNA origami uses a long DNA strand as a scaffold to assemble shorter DNA pieces, enabling the creation of nanoscale objects.
  • Custom scaffold sequences improve design accuracy, allowing for greater control over the object's size and specific structural details.
  • The introduction of a new phagemid, pScaf, reduces the fixed DNA sequence needed for scaffold production, enhancing design flexibility for DNA origami applications.
View Article and Find Full Text PDF

Scalable production of DNA nanostructures remains a substantial obstacle to realizing new applications of DNA nanotechnology. Typical DNA nanostructures comprise hundreds of DNA oligonucleotide strands, where each unique strand requires a separate synthesis step. New design methods that reduce the strand count for a given shape while maintaining overall size and complexity would be highly beneficial for efficiently producing DNA nanostructures.

View Article and Find Full Text PDF

The low detection sensitivity of enzyme linked immunosorbent assays (ELISAs) is a central problem in science and limits progress in multiple areas of biology and medicine. In this report we demonstrate that the hydrocyanines, a family of fluorescent reactive oxygen species (ROS) probes, can act as turn on fluorescent horseradish peroxidase (HRP) probes and thereby increase the sensitivity of conventional ELISAs by two orders of magnitude.

View Article and Find Full Text PDF

The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step.

View Article and Find Full Text PDF

Overexpressed receptors, characteristic of many cancers, have been targeted by various researchers to achieve a more specific treatment for cancer. A common approach is to use the natural ligand for the overexpressed receptor as a cancer-targeting agent which can deliver a chemically or genetically conjugated toxic molecule. However, it has been found that the therapeutic efficacy of such ligand-drug molecular conjugates can be limited, since they naturally follow the intracellular trafficking pathways of the endogenous ligands.

View Article and Find Full Text PDF