Publications by authors named "Parrini E"

Background: We aimed to estimate real-world evidence of the prevalence rate of genetic developmental and epileptic encephalopathies (DEEs) in the Italian population over a 11-year period.

Methods: Fifteen paediatric and adult tertiary Italian epilepsy centres participated in a survey related to 98 genes included in the molecular diagnostic workflows of most centres. We included patients with a clinical diagnosis of DEE, caused by a pathogenic or likely pathogenic variant in one of the selected genes, with a molecular diagnosis established between 2012 and 2022.

View Article and Find Full Text PDF

The centrosomal protein 83 (CEP83) is a centriolar protein involved in primary cilium assembly, an early and critical step in ciliogenesis. Bi-allelic pathogenic variants in the CEP83 gene have been associated with infantile nephronophthisis and, in a few patients, retinitis pigmentosa. We describe a 5-year-old boy with bilateral perisylvian polymicrogyria, intellectual disability, and nephronophthisis in whom, using exome sequencing, we identified the c.

View Article and Find Full Text PDF

Context: Cytochrome C oxidase (COX) is the fourth component of the respiratory chain and is located within the internal membrane of mitochondria. COX deficiency causes an inherited mitochondrial disease with significant genetic and phenotypic heterogeneity. Four clinical subtypes have been identified, each with distinct phenotypes and genetic variants.

View Article and Find Full Text PDF

We aim to describe double gonosomal mosaicism in the gene in a mother who passed on two different pathogenic variants at the same nucleotide to her two affected children. We studied a boy with epilepsy and intellectual disability, along with his sister and mother who exhibited language impairment and learning difficulties without epilepsy. We identified in the proband a splice-site variant in (c.

View Article and Find Full Text PDF

COL4A1/2 variants are associated with highly variable multiorgan manifestations. Depicting the whole clinical spectrum of COL4A1/2-related manifestations is challenging, and there is no consensus on management and preventative strategies. Based on a systematic review of current evidence on COL4A1/2-related disease, we developed a clinical questionnaire that we administered to 43 individuals from 23 distinct families carrying pathogenic variants.

View Article and Find Full Text PDF

Reelin (RELN) is a secreted glycoprotein essential for cerebral cortex development. In humans, recessive RELN variants cause cortical and cerebellar malformations, while heterozygous variants were associated with epilepsy, autism, and mild cortical abnormalities. However, the functional effects of RELN variants remain unknown.

View Article and Find Full Text PDF

-associated encephalopathy is characterized by intellectual disability (ID), autism spectrum disorder and epilepsy. Specific treatments are still lacking. We describe a 12-year-old boy with severe ID and treatment-resistant seizures due to a pathogenic variant.

View Article and Find Full Text PDF

Objective: YWHAG variant alleles have been associated with a rare disease trait whose clinical synopsis includes an early onset epileptic encephalopathy with predominantly myoclonic seizures, developmental delay/intellectual disability, and facial dysmorphisms. Through description of a large cohort, which doubles the number of reported patients, we further delineate the spectrum of YWHAG-related epilepsy.

Methods: We included in this study 24 patients, 21 new and three previously described, with pathogenic/likely pathogenic variants in YWHAG.

View Article and Find Full Text PDF

Biallelic CNTNAP2 variants have been associated with Pitt-Hopkins-like syndrome. We describe six novel and one previously reported patients from six independent families and review the literature including 64 patients carrying biallelic CNTNAP2 variants. Initial reports highlighted intractable focal seizures and the failure of epilepsy surgery in children, but subsequent reports did not expand on this aspect.

View Article and Find Full Text PDF

The clinical phenotype of Cyclin-Dependent Kinase-Like 5 (CDKL5) deficiency disorder (CDD) has been delineated but neuroimaging features have not been systematically analyzed. We studied brain magnetic resonance imaging (MRI) scans in a cohort of CDD patients and reviewed age at seizure onset, seizure semiology, head circumference. Thirty-five brain MRI from 22 unrelated patients were included.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamin 1 is a protein that plays a key role in the release of neurotransmitters at synapses, and mutations in its gene (DNM1) can lead to severe epilepsy and other developmental issues.* -
  • A case study of a 36-year-old man with autism and mild seizures revealed a new genetic mutation (c.1994T>C) in the GTPase effector domain of the DNM1 gene, highlighting a unique phenotype differing from typical infantile epilepsy cases.* -
  • Structural analysis indicates that this mutation disrupts important interactions within the dynamin-1 protein, expanding the understanding of how different mutations in the DNM1 gene can manifest in varying neurological conditions.*
View Article and Find Full Text PDF

Identifying genetic risk factors for highly heterogeneous disorders like epilepsy remains challenging. Here, we present the largest whole-exome sequencing study of epilepsy to date, with >54,000 human exomes, comprising 20,979 deeply phenotyped patients from multiple genetic ancestry groups with diverse epilepsy subtypes and 33,444 controls, to investigate rare variants that confer disease risk. These analyses implicate seven individual genes, three gene sets, and four copy number variants at exome-wide significance.

View Article and Find Full Text PDF

Walker-Warburg syndrome (WWS) (OMIM #236670) is an autosomal recessive disorder characterized by congenital muscular dystrophy, hydrocephalus, cobblestone lissencephaly, and retinal dysplasia. The main genes involved are: , and . We present a fetus with WWS showing at ultrasound severe triventricular hydrocephalus.

View Article and Find Full Text PDF

Reelin, a large extracellular protein, plays several critical roles in brain development and function. It is encoded by RELN, first identified as the gene disrupted in the reeler mouse, a classic neurological mutant exhibiting ataxia, tremors and a 'reeling' gait. In humans, biallelic variants in RELN have been associated with a recessive lissencephaly variant with cerebellar hypoplasia, which matches well with the homozygous mouse mutant that has abnormal cortical structure, small hippocampi and severe cerebellar hypoplasia.

View Article and Find Full Text PDF

In the last few years, with the advent of next generation sequencing (NGS), our knowledge of genes associated with monogenic epilepsies has significantly improved. NGS is also a powerful diagnostic tool for patients with epilepsy, through gene panels, exomes and genomes. This has improved diagnostic yield, reducing the time between the first seizure and a definitive molecular diagnosis.

View Article and Find Full Text PDF
Article Synopsis
  • - CHD2 is a gene that encodes a protein involved in DNA and chromatin remodeling, and its pathogenic variants can lead to various neurodevelopmental issues, including epilepsy and developmental delays.
  • - The study reviewed a total of 102 patients, identifying both known and novel variants, and highlighted a new case of adult-onset epilepsy linked to a specific CHD2 variant.
  • - Most patients (about 72.5%) had truncating variants, with epilepsy occurring in 92% of cases, generally beginning around age 2. However, a clear link between specific genetic variations and health outcomes has not been established.
View Article and Find Full Text PDF

PURA syndrome is a distinct form of developmental encephalopathy, characterized by early-onset hypotonia, severe developmental delay, intellectual disability, epilepsy and respiratory and gastrointestinal disorders. We report a child with PURA syndrome, harbouring a previously described mutation, whose phenotype included two peculiar aspects: (1) hypokinetic-rigid syndrome, which was part of the clinical presentation from an early stage of the disease, and (2) reflex seizures, consisting of a series of spasms. We provide detailed clinical description and video recordings demonstrating both these aspects that are newly described in PURA syndrome.

View Article and Find Full Text PDF

Lissencephaly describes a group of conditions characterized by the absence of normal cerebral convolutions and abnormalities of cortical development. To date, at least 20 genes have been identified as involved in the pathogenesis of this condition. Variants in , encoding a protein involved in the regulation of neuronal migration, have been recently described as causative of lissencephaly with a posterior-prevalent involvement of the cerebral cortex and an autosomal dominant pattern of inheritance.

View Article and Find Full Text PDF

Objective: To report longitudinal clinical, EEG, and MRI findings in 2 sisters carrying compound heterozygous mutations and exhibiting a peculiar form of developmental and epileptic encephalopathy (DEE). Neuropathologic features are also described in one of the sisters.

Methods: Clinical course description, video-EEG polygraphic recordings, brain MRI, skin and muscle biopsies, whole-exome sequencing (WES), and brain neuropathology.

View Article and Find Full Text PDF

Cerebral folate transporter deficiency syndrome, caused by FOLR-1 mutations is characterized by late infantile onset, severe developmental regression, epilepsy, and leukodystrophy. An extremely low concentration of 5-methyltetrahydrofolate in the cerebrospinal fluid provides a crucial clue to its diagnosis and is a treatment target. Oral or intravenous folinic acid (5-formyltetrahydrofolate) administration improves clinical symptoms and brain magnetic resonance imaging (MRI) findings.

View Article and Find Full Text PDF

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2.

View Article and Find Full Text PDF

Objective: Congenital disorder of glycosylation (CDG) due to a defective phosphatidylinositol glycan anchor biosynthesis class A protein (PIGA) is a severe X-linked developmental and epileptic encephalopathy. Seizures are often treatment refractory, and patients have intellectual disability and global developmental delay. Previous reports have suggested that patients with PIGA-CDG have a high risk of premature mortality.

View Article and Find Full Text PDF