Publications by authors named "Parren P"

Vγ9Vδ2 T cells constitute a homogeneous effector T cell population that lyses tumors of different origin, including the prostate. We generated a bispecific T cell engager (bsTCE) to direct Vγ9Vδ2 T cells to PSMA prostate cancer (PCa) cells. The PSMA-Vδ2 bsTCE triggered healthy donor and PCa patient-derived Vγ9Vδ2 T cells to lyse PSMA PCa cell lines and patient-derived tumor cells while sparing normal prostate cells and enhanced Vγ9Vδ2 T cell antigen cross-presentation to CD8 T cells.

View Article and Find Full Text PDF

Complement activation protects against infection but also contributes to pathological mechanisms in a range of clinical conditions such as autoimmune diseases and transplant rejection. Complement-inhibitory drugs, either approved or in development, usually act systemically, thereby increasing the risk for infections. We therefore envisioned a novel class of bispecific antibodies (bsAbs) which are capable of site-directed complement inhibition by bringing endogenous complement regulators in the vicinity of defined cell surface antigens.

View Article and Find Full Text PDF
Article Synopsis
  • Autoantibodies against complement component C1q are linked to autoimmune diseases like systemic lupus erythematosus and specifically bind to solid-phase C1q rather than its fluid form, indicating that normal C1q levels are maintained in affected patients.
  • Researchers isolated B cells that produce C1q-reactive antibodies and created nine monoclonal antibodies (mAbs) that display high affinity for the collagen-like region of C1q, recognizing multiple natural ligands and specific epitopes.
  • These anti-C1q mAbs enhance phagocytic activity against immune complexes without promoting complement activation, suggesting their role in autoimmune conditions may involve increased immune response through Fc-receptor-mediated functions.
View Article and Find Full Text PDF

Antibody-mediated delivery of immunogenic epitopes to redirect virus-specific CD8 T-cells towards cancer cells is an emerging and promising new therapeutic strategy. These so-called antibody-epitope conjugates (AECs) rely on the proteolytic release of the epitopes close to the tumor surface for presentation by HLA class I molecules to eventually redirect and activate virus-specific CD8 T-cells towards tumor cells. We fused the immunogenic EBV-BRLF1 epitope preceded by a protease cleavage site to the C-terminus of the heavy and/or light chains of cetuximab and trastuzumab.

View Article and Find Full Text PDF

Vγ9Vδ2 T cells are effector cells with proven antitumor efficacy against a broad range of cancers. This study aimed to assess the antitumor activity and safety of a bispecific antibody directing Vγ9Vδ2 T cells to EGFR-expressing tumors. An EGFR-Vδ2 bispecific T-cell engager (bsTCE) was generated, and its capacity to activate Vγ9Vδ2 T cells and trigger antitumor activity was tested in multiple in vitro, in vivo, and ex vivo models.

View Article and Find Full Text PDF

Therapeutic antibody-epitope conjugates (AECs) are promising new modalities to deliver immunogenic epitopes and redirect virus-specific T-cell activity to cancer cells. Nevertheless, many aspects of these antibody conjugates require optimization to increase their efficacy. Here we evaluated different strategies to conjugate an EBV epitope (YVL/A2) preceded by a protease cleavage site to the antibodies cetuximab and trastuzumab.

View Article and Find Full Text PDF

Bispecific T cell engagers (bsTCEs) hold great promise for cancer treatment but face challenges due to the induction of cytokine release syndrome (CRS), on-target off-tumor toxicity, and the engagement of immunosuppressive regulatory T cells that limit efficacy. The development of Vγ9Vδ2-T cell engagers may overcome these challenges by combining high therapeutic efficacy with limited toxicity. By linking a CD1d-specific single-domain antibody (VHH) to a Vδ2-TCR-specific VHH, we create a bsTCE with trispecific properties, which engages not only Vγ9Vδ2-T cells but also type 1 NKT cells to CD1d tumors and triggers robust proinflammatory cytokine production, effector cell expansion, and target cell lysis in vitro.

View Article and Find Full Text PDF

Background: Immunosuppressive extracellular adenosine is generated by the enzymatic activity of CD73. In preclinical models, antibodies (Abs) targeting different epitopes on CD73 exert anticancer activity through distinct mechanisms such as inhibition of enzymatic activity, engagement of Fc receptors, and spatial redistribution of CD73.

Methods: Using controlled Fab arm exchange, we generated biparatopic bispecific antibodies (bsAbs) from parental anti-CD73 Abs with distinct anticancer activities.

View Article and Find Full Text PDF

Antibodies are the cardinal effector molecules of the immune system and are being leveraged with enormous success as biotherapeutic drugs. A key part of the adaptive immune response is the production of an epitope-diverse, polyclonal antibody mixture that is capable of neutralizing invading pathogens or disease-causing molecules through binding interference and by mediating humoral and cellular effector functions. Avidity - the accumulated binding strength derived from the affinities of multiple individual non-covalent interactions - is fundamental to virtually all aspects of antibody biology, including antibody-antigen binding, clonal selection and effector functions.

View Article and Find Full Text PDF

γδ T-cells directly recognize and kill transformed cells independently of HLA-antigen presentation, which makes them a highly promising effector cell compartment for cancer immunotherapy. Novel γδ T-cell-based immunotherapies, primarily focusing on the two major γδ T-cell subtypes that infiltrate tumors ( Vδ1 and Vδ2), are being developed. The Vδ1 T-cell subset is enriched in tissues and contains both effector T-cells as well as regulatory T-cells with tumor-promoting potential.

View Article and Find Full Text PDF

The hexamerization of natural, human IgG antibodies after cell surface antigen binding can induce activation of the classical complement pathway. Mutations stimulating Fc domain-mediated hexamerization can potentiate complement activation and induce the clustering of cell surface receptors, a finding that was applied to different clinically investigated antibody therapeutics. Here, we biophysically characterized how increased self-association of IgG1 antibody variants with different hexamerization propensity may impact their developability, rather than functional properties.

View Article and Find Full Text PDF

Surgical resection of the tumor is the primary treatment of colorectal cancer patients. However, we previously demonstrated that abdominal surgery promotes the adherence of circulating tumor cells (CTC) in the liver and subsequent liver metastasis development. Importantly, preoperative treatment with specific tumor-targeting monoclonal antibodies (mAb) prevented surgery-induced liver metastasis development in rats.

View Article and Find Full Text PDF
Article Synopsis
  • - Complement plays a crucial role in antibody-mediated clearance of infections and tumor cells by recruiting the C1 complex to target cells, leading to pore formation and phagocytosis.
  • - The C1 complex is made up of the recognition protein C1q and proteases C1r and C1s, and the interaction between C1 and IgG-Fc is influenced by the function of C1rs proteases, affecting the stability of the C1q-IgG complex.
  • - Engineering antibodies to enhance hexamer formation improves the stability of C1q-IgG interactions and boosts complement-dependent phagocytosis, offering valuable insights for developing better antibody therapies.
View Article and Find Full Text PDF
Article Synopsis
  • A bispecific antibody (BsAb) targeting EGFR and MET pathways was developed to tackle resistance in non-small cell lung cancer treatments.
  • The study involved screening multiple BsAbs to identify effective candidates that bind to EGFR and MET without triggering excess cell growth.
  • The final product, amivantamab, demonstrated enhanced antitumor effects compared to traditional inhibitors, potentially benefiting patients with cancers linked to faulty EGFR and MET signaling.
View Article and Find Full Text PDF

Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed "Fab-arm exchange" in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized.

View Article and Find Full Text PDF

Purpose: Although considerable progress has been made with autologous T cell-based therapy in B-cell malignancies, application in chronic lymphocytic leukemia (CLL) lags behind due to disappointing response rates as well as substantial toxicity that is of particular concern in the elderly CLL population. Vγ9Vδ2-T cells form a conserved T-cell subset with strong intrinsic immunotherapeutic potential, largely because of their capacity to be triggered by phosphoantigens that can be overproduced by CLL and other malignant cells. Specific activation of Vγ9Vδ2-T cells by a bispecific antibody may improve the efficacy and toxicity of autologous T-cell-based therapy in CLL.

View Article and Find Full Text PDF

Novel T cell-based therapies for the treatment of B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), are thought to have strong potential. Progress, however, has been hampered by low efficacy and high toxicity. Tumor targeting by Vγ9Vδ2 T cells, a conserved T-cell subset with potent intrinsic antitumor properties, mediated by a bispecific antibody represents a novel approach promising high efficacy with limited toxicity.

View Article and Find Full Text PDF

Higher-order death receptor 5 (DR5) clustering can induce tumor cell death; however, therapeutic compounds targeting DR5 have achieved limited clinical efficacy. We describe HexaBody-DR5/DR5, an equimolar mixture of two DR5-specific IgG1 antibodies with an Fc-domain mutation that augments antibody hexamerization after cell surface target binding. The two antibodies do not compete for binding to DR5 as demonstrated using binding competition studies, and binding to distinct epitopes in the DR5 extracellular domain was confirmed by crystallography.

View Article and Find Full Text PDF

RAG complexes recognise (cryptic) RSS sites both in and outside immunoglobulin sites. Excision circles may be reinserted into V(D)J rearrangements as long templated insertions to diversify the adaptive immune repertoire. We show that such VDJ with templated insertions are incidentally found in the repertoire of healthy donors.

View Article and Find Full Text PDF

Tetraspanin CD37 has recently received renewed interest as a therapeutic target for B-cell malignancies. Although complement-dependent cytotoxicity (CDC) is a powerful Fc-mediated effector function for killing hematological cancer cells, CD37-specific antibodies are generally poor inducers of CDC. To enhance CDC, the E430G mutation was introduced into humanized CD37 monoclonal IgG1 antibodies to drive more efficient IgG hexamer formation through intermolecular Fc-Fc interactions after cell surface antigen binding.

View Article and Find Full Text PDF

Background: DuoBody®-CD3xCD20 (GEN3013) is a full-length human IgG1 bispecific antibody (bsAb) recognizing CD3 and CD20, generated by controlled Fab-arm exchange. Its Fc domain was silenced by introduction of mutations L234F L235E D265A.

Methods: T-cell activation and T-cell-mediated cytotoxicity were measured by flow cytometry following co-culture with tumour cells.

View Article and Find Full Text PDF

Activation of membrane receptors through clustering is a common mechanism found in various biological systems. Spatial proximity of receptors may be transduced across the membrane to initiate signaling pathways or alternatively be recognized by peripheral proteins or immune cells to trigger external effector functions. Here we show how specific immunoglobulin G (IgG) binding induces clustering of monomeric target molecules in lipid membranes through Fc-Fc interactions.

View Article and Find Full Text PDF

Carbamylation is a post-translational modification that can be detected on a range of proteins, including immunoglobulin (Ig)G, in several clinical conditions. Carbamylated IgG (ca-IgG) was reported to lose its capacity to trigger complement activation, but the mechanism remains unclear. Because C1q binds with high affinity to hexameric IgG, we analyzed whether carbamylation of IgG affects binding of C1q, hexamerization and complement-dependent cytotoxicity (CDC).

View Article and Find Full Text PDF