Low energy ion implantation of hyperpolarized radioactive magnetic resonance probes allows the NMR study of thin film heterostructures by enabling depth-resolved measurements on a nanometer lengthscale. By stopping the probe ions in a layer adjacent to a layer of interest, it is possible to study magnetic fields proximally. Here we show that, in the simplest case of a uniformly magnetized layer, this yields an unperturbed in situ frequency reference.
View Article and Find Full Text PDFA low energy radioactive beam of polarized 8Li has been used to observe the vortex lattice near the surface of superconducting NbSe2. The inhomogeneous magnetic-field distribution associated with the vortex lattice was measured using depth-resolved beta-detected NMR. Below Tc, one observes the characteristic line shape for a triangular vortex lattice which depends on the magnetic penetration depth and vortex core radius.
View Article and Find Full Text PDFThe magnetic properties of a monolayer of Mn12 single molecule magnets grafted onto a silicon (Si) substrate have been investigated using depth-controlled beta-detected nuclear magnetic resonance. A low-energy beam of spin-polarized radioactive 8Li was used to probe the local static magnetic field distribution near the Mn12 monolayer in the Si substrate. The resonance line width varies strongly as a function of implantation depth as a result of the magnetic dipolar fields generated by the Mn12 electronic magnetic moments.
View Article and Find Full Text PDFThe temperature dependence of the frequency shift and spin-lattice relaxation rate of isolated, nonmagnetic (8)Li impurities implanted in a nearly ferromagnetic host (Pd) are measured by means of beta-detected nuclear magnetic resonance (beta-NMR). The shift is negative, very large, and increases monotonically with decreasing T in proportion to the bulk susceptibility of Pd for T > T* approximately 100 K. Below T*, an additional shift occurs which we attribute to the response of Pd to the defect.
View Article and Find Full Text PDFWe demonstrate that zero-field beta-detected nuclear quadrupole resonance and spin relaxation of low energy (8)Li can be used as a sensitive local probe of structural phase transitions near a surface. We find that the transition near the surface of a SrTiO(3) single crystal occurs at T(c) approximately 150K, i.e.
View Article and Find Full Text PDFSubstitution of bipyridine for a nucleobase leads to modified peptide nucleic acid (PNA) single strands that are bridged in the presence of Ni2+ into a duplex containing a combination of hydrogen and coordinative bonds. CD experiments demonstrate that the duplex adopts a structure similar to that of an unmodified 10-bp PNA duplex, and UV melting experiments show a very sensitive dependence of the duplex stability on the substitution of a nucleobase pair with a pair of ligands or a metal-ligand alternative base pair.
View Article and Find Full Text PDF