Transient receptor potential ankyrin 1 (TRPA1) is a polymodal cation channel that is activated by electrophilic irritants, oxidative stress, cold temperature, and GPCR signaling. TRPA1 expression has been primarily identified in subsets of nociceptive sensory afferents and is considered a target for future analgesics. Nevertheless, TRPA1 has been implicated in other cell types including keratinocytes, epithelium, enterochromaffin cells, endothelium, astrocytes, and CNS neurons.
View Article and Find Full Text PDFThe airways are densely innervated by sensory afferent nerves, whose activation regulates respiration and triggers defensive reflexes (e.g., cough, bronchospasm).
View Article and Find Full Text PDFBiochem Biophys Rep
September 2021
Transient Receptor Potential Ankyrin 1 (TRPA1) is a tetrameric, nonselective cation channel expressed on nociceptive sensory nerves whose activation elicits nocifensive responses (e.g. pain).
View Article and Find Full Text PDFObjective: Transient receptor potential ankyrin 1 (TRPA1) is an excitatory ion channel expressed on a subset of sensory neurons. TRPA1 is activated by a host of noxious stimuli including pollutants, irritants, oxidative stress and inflammation, and is thought to play an important role in nociception and pain perception. TRPA1 is therefore a therapeutic target for diseases with nociceptive sensory signaling components.
View Article and Find Full Text PDFThe ATP-sensitive P2X ionotropic receptor plays a critical role in a number of signal processes including taste and hearing, carotid body detection of hypoxia, the exercise pressor reflex and sensory transduction of mechanical stimuli in the airways and bladder. Elucidation of the role of P2X has been hindered by the lack of selective tools. In particular, detection of P2X using established pharmacological and biochemical techniques yields dramatically different expression patterns, particularly in the peripheral and central nervous systems.
View Article and Find Full Text PDFInflammation can increase the excitability of bronchopulmonary C-fibers leading to excessive sensations and reflexes (e.g. wheeze and cough).
View Article and Find Full Text PDFInflammation causes activation of nociceptive sensory nerves, resulting in debilitating sensations and reflexes. Inflammation also induces mitochondrial dysfunction through multiple mechanisms. Sensory nerve terminals are densely packed with mitochondria, suggesting that mitochondrial signaling may play a role in inflammation-induced nociception.
View Article and Find Full Text PDFObjective: Redox-sensitive green fluorescent protein (roGFP) is a genetically-encoded redox-sensitive protein used to detect cellular oxidative stress associated with reactive oxygen species production. Here we replaced the cysteine at position 147 of roGFP1 (variant of roGFP) with selenocysteine in order to increase redox sensitivity of the redox reporter.
Results: Expression of roGFP1 selenoprotein (roGFP1-Se147) in HEK293 cells required the presence of a selenocysteine insertion sequence and was augmented by co-expression with SBP2.
Activation of the sensory nerve ion channel TRPA1 by electrophiles is the key mechanism that initiates nociceptive signaling, and leads to defensive reflexes and avoidance behaviors, during oxidative stress in mammals. TRPA1 is rapidly activated by subtoxic levels of electrophiles, but it is unclear how TRPA1 outcompetes cellular antioxidants that protect cytosolic proteins from electrophiles. Here, using physiologically relevant exposures, we demonstrate that electrophiles react with cysteine residues on mammalian TRPA1 at rates that exceed the reactivity of typical cysteines by 6,000-fold and that also exceed the reactivity of antioxidant enzymes.
View Article and Find Full Text PDFThe Thy1.2 YFP-16 mouse expresses yellow fluorescent protein (YFP) in specific subsets of peripheral and central neurons. The original characterization of this model suggested that YFP was expressed in all sensory neurons, and this model has been subsequently used to study sensory nerve structure and function.
View Article and Find Full Text PDFAirway sensory nerve excitability is a key determinant of respiratory disease-associated reflexes and sensations such as cough and dyspnea. Inflammatory signaling modulates mitochondrial function and produces reactive oxygen species (ROS). Peripheral terminals of sensory nerves are densely packed with mitochondria; thus, we hypothesized that mitochondrial modulation would alter neuronal excitability.
View Article and Find Full Text PDFMitochondrial dysfunction and subsequent oxidative stress has been reported for a variety of cell types in inflammatory diseases. Given the abundance of mitochondria at the peripheral terminals of sensory nerves and the sensitivity of transient receptor potential (TRP) ankyrin 1 (A1) and TRP vanilloid 1 (V1) to reactive oxygen species (ROS) and their downstream products of lipid peroxidation, we investigated the effect of nerve terminal mitochondrial dysfunction on airway sensory nerve excitability. Here we show that mitochondrial dysfunction evoked by acute treatment with antimycin A (mitochondrial complex III Qi site inhibitor) preferentially activated TRPA1-expressing "nociceptor-like" mouse bronchopulmonary C-fibers.
View Article and Find Full Text PDFThe Forkhead transcription factor, FoxO3a induces genomic death responses in neurones following translocation from the cytosol to the nucleus. Nuclear translocation of FoxO3a is triggered by trophic factor withdrawal, oxidative stress and the stimulation of extrasynaptic NMDA receptors. Receptor activation of phosphatidylinositol 3-kinase (PI3K)-Akt signalling pathways retains FoxO3a in the cytoplasm, thereby inhibiting the transcriptional activation of death-promoting genes.
View Article and Find Full Text PDFIt has long been recognized that divalent cations modulate cell excitability. Sensory nerve excitability is of critical importance to peripheral diseases associated with pain, sensory dysfunction and evoked reflexes. Thus we have studied the role these cations play on dissociated sensory nerve activity.
View Article and Find Full Text PDFFlavonoids are plant-derived polyphenolic compounds with neuroprotective properties. Recent work suggests that, in addition to acting as hydrogen donors, they activate protective signalling pathways. The anti-oxidant response element (ARE) promotes the expression of protective proteins including those required for glutathione synthesis (xCT cystine antiporter, gamma-glutamylcysteine synthetase and glutathione synthase).
View Article and Find Full Text PDFDietary flavonoids, including the citrus flavanone hesperetin, may have stimulatory effects on cytoprotective intracellular signalling pathways. In primary mouse cortical neurone cultures, but not SH-SY5Y human neuroblastoma cells or human primary dermal fibroblasts (Promocells), hesperetin (100-300nM, 15min) caused significant increases in the level of ERK1/2 phosphorylation, but did not increase CREB phosphorylation. Administration of hesperetin for 18h did not alter gene expression driven by the cyclic AMP response element (CRE), assessed using a luciferase reporter system, but 300nM hesperetin partially reversed staurosporine-induced cell death in primary neurones.
View Article and Find Full Text PDFEmerging evidence suggests that the cellular actions of flavonoids relate not simply to their antioxidant potential but also to the modulation of protein kinase signalling pathways. We investigated in primary cortical neurons, the ability of the flavan-3-ol, (-)epicatechin, and its human metabolites at physiologically relevant concentrations, to stimulate phosphorylation of the transcription factor cAMP-response element binding protein (CREB), a regulator of neuronal viability and synaptic plasticity. (-)Epicatechin at 100-300 nmol/L stimulated a rapid, extracellular signal-regulated kinase (ERK)- and PI3K-dependent, increase in CREB phosphorylation.
View Article and Find Full Text PDFWe investigated the role of small-conductance calcium-activated potassium (SK) and intermediate-conductance calcium-activated potassium channels in modulating sensory transmission from peripheral afferents into the rat spinal cord. Subunit-specific antibodies reveal high levels of SK3 immunoreactivity in laminas I, II, and III of the spinal cord. Among dorsal root ganglion neurons, both peripherin-positive (C-type) and peripherin-negative (A-type) cells show intense SK3 immunoreactivity.
View Article and Find Full Text PDFThe aim of this study was to determine whether functional heteromeric channels can be formed by co-assembly of rat SK3 (rSK3) potassium channel subunits with either SK1 or SK2 subunits. First, to determine whether rSK3 could co-assemble with rSK2 we created rSK3VK (an SK3 mutant insensitive to block by UCL 1848). When rSK3VK was co-expressed with rSK2 the resulting currents had an intermediate sensitivity to UCL 1848 (IC50 of approximately 5 nM compared with 120 pM for rSK2 and >300 nM for rSK3VK), suggesting that rSK3 and rSK2 can form functional heteromeric channels.
View Article and Find Full Text PDFThe rat SK1 gene (rSK1) does not form functional Ca2+-activated potassium channels when expressed alone in mammalian cell lines. Using a selective antibody to the rSK1 subunit and a yellow fluorescent protein (YFP) tag we have discovered that rSK1 expression produces protein that remains largely at intracellular locations. We tested the idea that rSK1 may need an expression partner, rSK2, in order to form functional channels.
View Article and Find Full Text PDF