Publications by authors named "Parminder Chahal"

The virus-like particle (VLP) platform is a robust inducer of humoral and cellular immune responses; hence, it has been used in vaccine development for several infectious diseases. In the current work, VLPs carrying SARS-CoV-2 Spike (S) protein (Wuhan strain) with an HIV-1 Gag core were produced using suspension HEK 293SF-3F6 cells by transient transfection. The Gag was fused with green fluorescent protein (GFP) for rapid quantification of the VLPs.

View Article and Find Full Text PDF

Lipoprotein lipase deficiency (LPLD) results from mutations within the gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues.

View Article and Find Full Text PDF

Packaging or producer cell lines for scalable recombinant adeno-associated virus (rAAV) production have been notoriously difficult to create due in part to the cytostatic nature of the Rep proteins required for AAV production. The most difficult challenge being creating AAV packaging cell lines using HEK293 parental cells, currently the best mammalian platform for rAAV production due to the constitutive expression of in HEK293 cells, a key transcription activator. Using suspension and serum-free media adapted HEK293SF carrying a gene expression regulation system induced by addition of cumate and coumermycin, we were able to create -expressing AAV packaging cells.

View Article and Find Full Text PDF

In this work, laboratory- and large-scale methods were tested for purification of a human immunodeficiency virus (HIV) vaccine candidate, based on recombinant vesicular stomatitis virus (rVSV). First step of the purification, the clarification of the rVSVs produced in serum-free cell culture medium, was tested by centrifugation and filtration using different filtration media and pore sizes (0.45 to 30 µm).

View Article and Find Full Text PDF

Removal of empty capsids from adeno-associated virus (AAV) manufacturing lots remains a critical step in the downstream processing of AAV clinical-grade batches. Because of similar physico-chemical characteristics, the AAV capsid populations totally lacking or containing partial viral DNA are difficult to separate from the desired vector capsid populations. Based on minute differences in density, ultracentrifugation remains the most effective separation method and has been extensively used at small scale but has limitations associated with availabilities and operational complexities in large-scale processing.

View Article and Find Full Text PDF

The development of various manufacturing platforms and analytical technologies has substantially contributed to successfully translating the recombinant adeno-associated viral vector from the laboratory to the clinic. The active deployment of these analytical technologies for process and product characterization has helped define critical quality attributes and improve the quality of the clinical grade material. In this article, we report an anion exchange high-performance liquid chromatography (AEX-HPLC) method for relative and as well as absolute quantification of empty capsids (EC) and capsids encapsidating genetic material (CG) in purified preparations of adeno-associated virus (AAV) using serotype 5 as a model.

View Article and Find Full Text PDF

Despite rapid progress in the field, scalable high-yield production of adeno-associated virus (AAV) is still one of the critical bottlenecks the manufacturing sector is facing. The insect cell-baculovirus expression vector system (IC-BEVS) has emerged as a mainstream platform for the scalable production of recombinant proteins with clinically approved products for human use. In this review, we provide a detailed overview of the advancements in IC-BEVS for rAAV production.

View Article and Find Full Text PDF

Acquired Immune Deficiency Syndrome (AIDS) in humans is a result of the destruction of the immune system caused by Human Immunodeficiency Virus (HIV) infection. This serious epidemic is still progressing world-wide. Despite advances in treatment, a safe and effective preventive HIV vaccine is desired to combat this disease, and to save millions of lives.

View Article and Find Full Text PDF

Ebola virus disease is an urgent international priority. Promising results for several vaccine candidates have been reported in non-human primate studies and clinical trials with the most promising being the rVSV-ZEBOV vaccine. In this study, we sought to produce rVSV-ZEBOV in HEK 293SF cells in suspension and serum-free media.

View Article and Find Full Text PDF

One of the concerns associated with the use of influenza virus-like particles (VLPs) as vaccine candidate or delivery system is their heterogeneous composition. Enveloped VLPs take up the host cell membrane at the budding site carrying out not only the viral antigenic proteins but also host proteins. In addition, the intrinsic nature of cells to produce membrane derived vesicles or extracellular vesicles (EVs), which have similar size to the VLPs, makes VLP purification process challenging.

View Article and Find Full Text PDF

Despite numerous advancements in production protocols, manufacturing AAV to meet exceptionally high demand (10-10 viral genomes [VGs]) in late clinical stages and for eventual systemic delivery poses significant challenges. Here, we report an efficient, simple, scalable, robust AAV5 production process utilizing the most recent modification of the OneBac platform. An increase in volumetric yield of genomic particles by ∼6-fold and functional particles by ∼20-fold was achieved by operating a high-cell-density process in shake flasks and bioreactors that involves an Sf9-based stable cell line grown at a density of about 10 million cells/mL infected with a single baculovirus.

View Article and Find Full Text PDF

A Palmer amaranth ( S. Watson) biotype has evolved resistance to photosystem (PS) II- (atrazine) and 4-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicides (mesotrione, tembotrione, and topramezone) in maize seed production field in Nebraska, USA. The objectives of this study were to determine the effect of soil residual pre-emergence (PRE) herbicides followed by (fb) tank-mixture of residual and foliar active post-emergence (POST) herbicides on PS-II- and HPPD-inhibitor-resistant Palmer amaranth control, maize yield, and net economic returns.

View Article and Find Full Text PDF

Vectored delivery of the ZMapp antibody cocktail (c2G4, c4G7, and c13C6) by using recombinant adeno-associated viruses (rAAVs) could be useful for preventive immunization against Ebola virus infections because rAAVs can generate long-term antibody expression. Three rAAVs (serotype 9) encoding chimeric ZMapp antibodies were produced by triple-plasmid transfection up to 10 L-scale in WAVE bioreactors using HEK293 cells grown in suspension/serum-free conditions. Efficacy of AAV-c2G4 via intravenous (i.

View Article and Find Full Text PDF

Influenza virus dominant antigens presentation using virus like particle (VLP) approach is attractive for the development of new generation of influenza vaccines. Mammalian cell platform offers many advantages for VLP production. However, limited attention has been paid to the processing of mammalian cell produced VLPs.

View Article and Find Full Text PDF

Manufacturing practices for recombinant adeno-associated viruses (AAV) have improved in the last decade through the development of new platforms in conjunction with better production and purification methods. In this review, we discuss the advantages and limitations of the most popular systems and methods employed with mammalian cell platforms. Methods and systems such as transient transfection, packaging and producer cells and adenovirus and herpes simplex virus are described.

View Article and Find Full Text PDF

Virus-like particles (VLPs) constitute a promising alternative as influenza vaccine. They are non-replicative particles that mimic the morphology of native viruses which make them more immunogenic than classical subunit vaccines. In this study, we propose HEK-293 cells in suspension culture in serum-free medium as an efficient platform to produce large quantities of VLPs.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is being used successfully in gene therapy. Different serotypes of AAV target specific organs and tissues with high efficiency. There exists an increasing demand to manufacture various AAV serotypes in large quantities for pre-clinical and clinical trials.

View Article and Find Full Text PDF

Background: Systemic delivery of small interfering RNA (siRNA) is limited by its poor stability and limited cell-penetrating properties. To overcome these limitations, we designed an efficient siRNA delivery system using polyethyleneimine-coated virus-like particles derived from adeno-associated virus type 2 (PEI-AAV2-VLPs).

Methods: AAV2-VLPs were produced in insect cells by infection with a baculovirus vector containing three AAV2 capsid genes.

View Article and Find Full Text PDF

The preparation of large amount of purified helper-dependent adenoviral vector material is hampered by the lack of development of downstream processes with proven records on separation and recovery efficiencies. In order to facilitate the use of clinical-grade helper-dependent virus material for large-scale in vivo studies, a three-step purification scheme consisting of (1) an anion-exchange chromatography for initial capturing of virus, (2) a shallow iodixanol density gradient ultracentrifugation for the removal of helper virus from helper-dependent virus, and (3) a size-exclusion chromatography for the removal of iodixanol and residual protein contaminants as a polishing step was developed. The use of a fast iodixanol density ultracentrifugation step was highly effective in separating infectious helper-dependent virus from contaminating helper virus.

View Article and Find Full Text PDF

Background: Recombinant adeno-associated virus (rAAV) are the most promising vectors for gene therapy. However, large-scale rAAV production remains a challenge for the translation of rAAV-based therapeutic strategies to the clinic. The baculovirus expression vector system (BEVS) has been engineered to produce high rAAV titers in serum-free suspension cultures of insect cells.

View Article and Find Full Text PDF

The ability to make a large variety of virus-like particles (VLPs) has been successfully achieved in the baculovirus expression vector system (BEVS)/insect cell system. The production and scale-up of these particles, which are mostly sought as candidate vaccines, are currently being addressed. Furthermore, these VLPs are being investigated as delivery agents for use as therapeutics.

View Article and Find Full Text PDF

An anion exchange high-performance liquid chromatography (HPLC) method for the quantification of human Reovirus type 3 particles was validated according to the performance criteria of precision, specificity, linearity of calibration and working range, limits of detection and quantification, accuracy and recovery. Samples taken at various stages of Reovirus purification were used for the validation of the method. The method was specific for Reovirus which eluted around 9.

View Article and Find Full Text PDF

Recombinant adeno-associated virus (rAAV) has emerged in recent years as a promising gene therapy vector that may be used in the treatment of diverse human diseases. The major obstacle to broadening the usage of rAAV vectors remains the limited capacity of available production systems to provide sufficient rAAV quantities for preclinical and clinical trials. The impracticality of expanding commonly used adherent cell lines represents a limitation to large-scale production.

View Article and Find Full Text PDF

Adeno-associated virus (AAV) is making its place in gene therapy applications; however, the industry is still facing obstacles in producing a large quantity of highly purified material for clinical studies. Insect cell technology can be used to produce AAV to meet the current demand. During the purification process it was observed that there was a reduced recovery of AAV produced in insect cells, Spodoptera frugiperda (Sf9).

View Article and Find Full Text PDF

Production of recombinant adeno-associated viral vectors using a baculovirus/insect cell system at various scales is presented. Shake flask studies were conducted to assess conditions to be used in bioreactors. Two insect cell lines, Trichoplusia ni (H5) and Spodoptera frugiperda (Sf9), were compared for their ability to produce rAAV-2 after infection with recombinant baculoviruses coding for the essential components of the vector.

View Article and Find Full Text PDF