Publications by authors named "Parmenter C"

Ventilator-associated pneumonia is defined as pneumonia that develops in a patient who has been on mechanical ventilation for more than 48 hours through an endotracheal tube. It is caused by biofilm formation on the indwelling tube, which introduces pathogenic microbes such as , and into the patient's lower airways. Currently, there is a lack of accurate models of ventilator-associated pneumonia development.

View Article and Find Full Text PDF

Ferritin, a spherical protein shell assembled from 24 subunits, functions as an efficient iron storage and release system through its channels. Understanding how various chemicals affect the structural behavior of ferritin is crucial for unravelling the origins of iron-related diseases in living organisms including humans. In particular, the influence of chemicals on ferritin's dynamics and iron release is barely explored at the single-protein level.

View Article and Find Full Text PDF

Laser Sintering (LS) is a type of Additive Manufacturing (AM) exploiting laser processing of polymeric particles to produce 3D objects. Because of its ease of processability and thermo-physical properties, polyamide-12 (PA-12) represents ~95% of the polymeric materials used in LS. This constrains the functionality of the items produced, including limited available colours.

View Article and Find Full Text PDF

Ferritin is a protein that stores and releases iron to prevent diseases associated with iron dysregulation in plants, animals, and bacteria. The conversion between iron-loaded holo-ferritin and empty apo-ferritin is an important process for iron regulation. To date, studies of ferritin have used either ensemble measurements to quantify the characteristics of a large number of proteins or single-molecule approaches to interrogate labeled or modified proteins.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are focusing on miniaturizing enzyme-based bioelectronics, which require 3D microstructured electrodes but are challenging to produce with traditional methods.
  • The study presents a new technique to enhance the adhesion of metal layers to polymer microstructures by using an interfacial adhesion layer, which solves issues of delamination that affect device performance.
  • A proof-of-concept demonstrated that the 3D conductive microelectrode, modified with glucose oxidase, effectively functions as a bioanode in a biofuel cell, showing promising conductivity and durability.*
View Article and Find Full Text PDF

Collagen hydrogels are a rapidly expanding platform in bioengineering and soft materials engineering for novel applications focused on medical therapeutics, medical devices and biosensors. Observations linking microstructure to material properties and function enables rational design strategies to control this space. Visualisation of the microscale organisation of these soft hydrated materials presents unique technical challenges due to the relationship between hydration and the molecular organisation of a collagen gel.

View Article and Find Full Text PDF
Article Synopsis
  • Low-power sonication is commonly used to break apart extracellular vesicles (EVs) after they are isolated, but its full effects on EVs remain unclear.
  • A study analyzed EVs from mesenchymal stem cells (MSCs) post-sonication using advanced imaging and analysis techniques.
  • Findings revealed that even the lowest sonication power can significantly change EV size, membrane integrity, and how they are taken up by cells, highlighting the need for better sonication protocols to ensure consistent results in EV research.
View Article and Find Full Text PDF

Gas storage and recovery processes in shales critically depend on nano-scale porosity and chemical composition, but information about the nanoscale pore geometry and connectivity of kerogen, insoluble organic shale matter, is largely unavailable. Using adsorption microcalorimetry, we show that once strong adsorption sites within nanoscale network are taken, gas adsorption even at very low pressure is governed by pore width rather than chemical composition. A combination of focused ion beam with scanning electron microscopy and transmission electron microscopy reveal the nanoscale structure of kerogen includes not only the ubiquitous amorphous phase but also highly graphitized sheets, fiber- and onion-like structures creating nanoscale voids accessible for gas sorption.

View Article and Find Full Text PDF

In this paper, we explore the development of the Cryo-Lift-Out (cryo-LO) technique as preparation tool for cryogenic transmission electron microscopy (cryo-TEM). What started in early work defying what was considered 'practically impossible' has developed into state-of-the-art practical reality. This paper presents the key hardware, basic principles and key considerations for the practical usage of cryogenic Lift-Out for those new to the field.

View Article and Find Full Text PDF

Remarkable interfacial behaviors are observed in nature. Our efforts, directed toward replicating the structures, chemistries, and therefore functional properties of natural nonwetting surfaces, are competing with the result of billions of years of natural selection. The application of man-made surfaces is challenged by their poor longevity in aggressive environmental or applied service conditions.

View Article and Find Full Text PDF

Vancomycin, a branched tricyclic glycosylated peptide antibiotic, is a last-line defence against serious infections caused by staphylococci, enterococci and other Gram-positive bacteria. Orally-administered vancomycin is the drug of choice to treat pseudomembranous enterocolitis in the gastrointestinal tract. However, the risk of vancomycin-resistant enterococcal infection or colonization is significantly associated with oral vancomycin.

View Article and Find Full Text PDF

The integrated analytical approach developed in this study offers a powerful methodology for the structural characterisation of complex molecular nanomaterials. Structures of a covalent organic framework based on boronate esters (COF-5) and a conjugated microporous polymer (Aza-CMP) have been investigated by a combination of several electron microscopy techniques elucidating the three-dimensional topology of the complex polycrystalline (COF) and non-crystalline (CMP) materials. Unexpected, aperiodic mesoporous channels of 20-50 nm in diameter were found to be penetrating the COF and CMP particles, which cannot be detected by X-ray diffraction techniques.

View Article and Find Full Text PDF

Metal oxide microparticles with well-defined internal mesostructures are promising materials for a variety of different applications, but practical routes to such materials that allow the constituent structural length scales to be precisely tuned have thus far been difficult to realize. Herein, we describe a novel platform methodology that utilizes self-assembled block copolymer (BCP) microparticles synthesized by dispersion polymerization in supercritical CO (scCO) as universal structure directing agents for both hydrolytic and nonhydrolytic sol-gel routes to metal oxides. Spherically structured poly(methyl methacrylate- block-4-vinylpyridine) (PMMA- b-P4VP) BCP microparticles are translated into a series of the corresponding organic/inorganic composites and pure inorganic derivatives with a high degree of fidelity for the metal oxides TiO and LiFePO.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have prevalent roles in cancer biology and regenerative medicine. Conventional techniques for characterising EVs including electron microscopy (EM), nanoparticle tracking analysis (NTA) and tuneable resistive pulse sensing (TRPS), have been reported to produce high variability in particle count (EM) and poor sensitivity in detecting EVs below 50 nm in size (NTA and TRPS), making accurate and unbiased EV analysis technically challenging. This study introduces direct stochastic optical reconstruction microscopy (d-STORM) as an efficient and reliable characterisation approach for stem cell-derived EVs.

View Article and Find Full Text PDF

The controlled manipulation of the spin and charge of electrons in a semiconductor has the potential to create new routes to digital electronics beyond Moore's law, spintronics, and quantum detection and imaging for sensing applications. These technologies require a shift from traditional semiconducting and magnetic nanostructured materials. Here, a new material system is reported, which comprises the InSe semiconductor van der Waals crystal that embeds ferromagnetic Fe-islands.

View Article and Find Full Text PDF

Oligopeptide-based supramolecular hydrogels hold promise in a range of applications. The gelation of these systems is hard to control, with minor alterations in the peptide sequence significantly influencing the self-assembly process. We explored three pentapeptide sequences with different charge distributions and discovered that they formed robust, pH-responsive hydrogels.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

View Article and Find Full Text PDF

The fabrication of complex three-dimensional gold-containing nanocomposite structures by simultaneous two-photon polymerisation and photoreduction is demonstrated. Increased salt delivers reduced feature sizes down to line widths as small as 78 nm, a level of structural intricacy that represents a significant advance in fabrication complexity. The development of a general methodology to efficiently mix pentaerythritol triacrylate (PETA) with gold chloride hydrate (HAuCl∙3HO) is reported, where the gold salt concentration is adjustable on demand from zero to 20 wt%.

View Article and Find Full Text PDF

The incorporation of probiotics and bioactive compounds, via plasticised thin-layered hydrocolloids, within food products has recently shown potential to functionalise and improve the health credentials of processed food. In this study, choice of polymer and the inclusion of whey protein isolate was evaluated for their ability to stabalise live probiotic organisms. Edible films based on low (LSA) and high (HSA) viscosity sodium alginate, low esterified amidated pectin (PEC), kappa-carrageenan/locust bean gum (κ-CAR/LBG) and gelatine (GEL) in the presence or absence of whey protein concentrate (WPC) were shown to be feasible carriers for the delivery of GG.

View Article and Find Full Text PDF

Sodium (salt) was encapsulated within the inner water phase of w/o/w food emulsions externally stabilised by starch particles with the ultimate aim of enhancing saltiness perception. The physical properties of the starch particles were modified by octenyl succinic anhydride (OSA) treatment (0-3%) to vary the degree of hydrophobicity of the emulsifying starch. During oral processing native salivary amylase hydrolysed the starch and destabilised the o/w emulsion releasing the inner w/o phase and subsequently sodium into the oral cavity, resulting in a salty taste.

View Article and Find Full Text PDF

We report on the growth and formation of single-layer boron nitride dome-shaped nanostructures mediated by small iron clusters located on flakes of hexagonal boron nitride. The nanostructures were synthesized in situ at high temperature inside a transmission electron microscope while the e-beam was blanked. The formation process, typically originating at defective step-edges on the boron nitride support, was investigated using a combination of transmission electron microscopy, electron energy loss spectroscopy and computational modelling.

View Article and Find Full Text PDF

Understanding the environmental drivers of zoonotic reservoir and human interactions is crucial to understanding disease risk, but these drivers are poorly predicted. We propose a mechanistic understanding of human-reservoir interactions, using hantavirus pulmonary syndrome as a case study. Crucial processes underpinning the disease's incidence remain poorly studied, including the connectivity among natural and peridomestic deer mouse host activity, virus transmission, and human exposure.

View Article and Find Full Text PDF
Article Synopsis
  • The focused ion beam scanning electron microscope (FIB-SEM) has been used for over 20 years to prepare thin lamellae from bulk samples for transmission electron microscopy (TEM) using a method called lift-out.
  • Recent advancements have allowed for the successful lift-out of high-water content biological samples under cryogenic conditions, enhancing techniques established by previous research.
  • The paper discusses strategies for maintaining cryogenic conditions, attaching samples to grids through cryo-condensation, and protecting lamellae during the transfer to the TEM.
View Article and Find Full Text PDF

We investigated a range of different mesoporous NiO electrodes prepared by different research groups and private firms in Europe to determine the parameters which influence good quality photoelectrochemical devices. This benchmarking study aims to solve some of the discrepancies in the literature regarding the performance of p-DSCs due to differences in the quality of the device fabrication. The information obtained will lay the foundation for future photocatalytic systems based on sensitized NiO so that new dyes and catalysts can be tested with a standardized material.

View Article and Find Full Text PDF