Publications by authors named "Parman T"

Background: Dimethandrolone undecanoate (DMAU) is under development as a single agent hormonal male contraceptive. DMAU is a prodrug hydrolyzed by esterase(s) to the active metabolite dimethandrolone (DMA) which has dual androgenic and progestogenic actions. Phase 1 clinical trial results show DMAU to be well-tolerated as an oral contraceptive in healthy men; however, delivery of DMAU as a long-acting injectable rather than a daily oral formulation would provide user compliance benefits and address oral bioavailability concerns.

View Article and Find Full Text PDF

Male contraceptive development has included use of testosterone (T) with or without a progestin or the use of a single molecule such as progestogenic androgens (PA) for suppression of testicular T production. Expanding upon the vast amount of data accumulated from nortestosterone (NT), NT analogs, and their prodrugs, a new series of PA, the C7 methyl, and ethyl α-substituted T analogs 7α-Methyltestosterone (7α-MT) and 7α-Ethyltestosterone (7α-ET), respectively, were hypothesized and designed to have superior androgenic and progestogenic activities when compared with parent T. Results from androgen receptor and progesterone receptor competitive binding and transcriptional activation assays showed favorable activities for these T analogs.

View Article and Find Full Text PDF

Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become a mainstay analytical technique in pharmaceutical research and development and clinical diagnosis due to several advantages including excellent selectivity, specificity, and high sensitivity. LC-MS/MS has become the method of choice for steroids analysis due to its fast analytical time and improved specificity yet has a challenge in the separation and measurement of isomers with the same product ions. Here we describe a high-sensitivity LC/LC-MS/MS method that combines chiral chromatography and reverse-phase chromatography (LC/LC) along with MS/MS to rapidly separate and quantify steroid isomers of 11ß-methyl-19-nortestosterone (11ß-MNT) and endogenous testosterone in serum.

View Article and Find Full Text PDF

The novel wound-healing biologic EPICERTIN, a recombinant analog of cholera toxin B subunit, is in early development for the management of ulcerative colitis. This study established for the first time the pharmacokinetics (PK), bioavailability (BA), and acute safety of EPICERTIN in healthy and dextran sodium sulfate-induced colitic mice and healthy rats. For PK and BA assessments, single administrations of various concentrations of EPICERTIN were given intravenously or intrarectally to healthy and colitic C57BL/6 mice and to healthy Sprague-Dawley rats.

View Article and Find Full Text PDF

The long and challenging drug development process begins with discovery biology for the selection of an appropriate target for a specific indication. Target is a broad term that can be applied to a range of biological entities such as proteins, genes, and ribonucleic acids (RNAs). Although there are numerous databases available for mining biological entities, publicly available searchable, downloadable databases to aid in target selection for a specific disease or indication (e.

View Article and Find Full Text PDF

Introduction: DSM421, a dihydroorotate dehydrogenase inhibitor, was in preclinical development as a potential treatment option for malaria. When tested in a core battery of safety pharmacology assays, DSM421 did not produce any effects at oral doses up to 750 mg/kg in an Irwin test in rats, but a respiratory study in rats using head-out plethysmography resulted in substantial changes in respiratory function as well as moribundity and mortality at that and lower doses. An investigation was performed to determine the source of this discrepancy.

View Article and Find Full Text PDF

Context: 11β-Methyl-19-nortestosterone-17β-dodecylcarbonate (11β-MNTDC) is an orally bioavailable prodrug of 11β-methyl-19-nortestosterone (11β-MNT) with androgenic and progestational activity.

Objectives: (i) Quantify 11β-MNT binding to androgen and progesterone receptors. (ii) Evaluate safety, tolerability, and serum gonadotropin and testosterone suppression by 11β-MNTDC in men.

View Article and Find Full Text PDF

To identify new cardiac biomarkers, a quantitative proteomic analysis has been performed on serum and heart tissue proteins from three species of nonhuman primates following isoproterenol (ISO) treatment. Three serum proteins--serum amyloid A (SAA), α-1-acid glycoprotein (A1AG), and apolipoprotein A-1 (Apo A1)--were consistently identified as changed and remained altered 72 h post dose in all three species post ISO treatment, indicating the potential of including these proteins in preclinical or clinical evaluation of drug-induced cardiac injury. Furthermore, proteomic analysis of heart tissue proteins following ISO treatment demonstrated detrimental effects on calcium signaling and energy generation in cardiac myocytes.

View Article and Find Full Text PDF
Article Synopsis
  • Batracylin (NSC-320846) is a cancer-fighting drug that inhibits DNA topoisomerases I and II but caused serious bladder issues when tested in Phase I clinical trials.
  • In studies on Fischer 344 rats, high doses of batracylin led to significant kidney and bone marrow damage, with evidence of DNA damage observed.
  • Treatment with Mesna, which usually prevents bladder toxicity from other drugs, did not help with the toxicity caused by batracylin, suggesting its harmful effects are due to DNA damage rather than a different mechanism found in other anticancer drugs.
View Article and Find Full Text PDF

Endoxifen (4-hydroxy-N-desmethyl-tamoxifen), one of the major active metabolites of tamoxifen, has substantially greater estrogen antagonist properties and antiproliferative effects in breast tumor cells than tamoxifen, a mixed estrogen agonist/antagonist. An associated risk of endometrial cancer and hyperplasia has been linked to the estrogen agonist properties of tamoxifen. We evaluated endoxifen using a classic uterotrophic effects method.

View Article and Find Full Text PDF

The assessment of cardiac toxicity is a major challenge in both drug development and clinical trials, and numerous marketed pharmaceuticals have been removed from the market due to unpredicted cardiac effects. Serum troponins are widely used indicators of cardiac injury; however, they are short-lived and have not been validated in preclinical animal models. In this study, we have used filter-aided sample preparation (FASP) and tandem mass tag (TMT) labeling to investigate serum protein alterations in isoproterenol-treated African green monkeys.

View Article and Find Full Text PDF

Previously reported studies identified analogues of propafenone that had potent antimalarial activity, reduced cardiac ion channel activity, and properties that suggested the potential for clinical development for malaria. Careful examination of the bioavailability, pharmacokinetics, toxicology, and efficacy of this series of compounds using rodent models revealed orally bioavailable compounds that are nontoxic and suppress parasitemia in vivo. Although these compounds possess potential for further preclinical development, they also carry some significant challenges.

View Article and Find Full Text PDF

Infection caused by Mycobacterium avium is common in AIDS patients who do not receive treatment with highly active antiretroviral therapy (HAART) or who develop resistance to anti-HIV therapy. Mefloquine, a racemic mixture used for malaria prophylaxis and treatment, is bactericidal against M. avium in mice.

View Article and Find Full Text PDF

Arylimidamides (AIAs) have shown outstanding in vitro potency against intracellular kinetoplastid parasites, and the AIA 2,5-bis[2-(2-propoxy)-4-(2-pyridylimino)aminophenyl]furan dihydrochloride (DB766) displayed good in vivo efficacy in rodent models of visceral leishmaniasis (VL) and Chagas' disease. In an attempt to further increase the solubility and in vivo antikinetoplastid potential of DB766, the mesylate salt of this compound and that of the closely related AIA 2,5-bis[2-(2-cyclopentyloxy)-4-(2-pyridylimino)aminophenyl]furan hydrochloride (DB1852) were prepared. These two mesylate salts, designated DB1960 and DB1955, respectively, exhibited dose-dependent activity in the murine model of VL, with DB1960 inhibiting liver parasitemia by 51% at an oral dose of 100 mg/kg/day × 5 and DB1955 reducing liver parasitemia by 57% when given by the same dosing regimen.

View Article and Find Full Text PDF

Malaria is a protozoal parasitic disease that is widespread in tropical and subtropical regions of Africa, Asia, and the Americas and causes more than 800,000 deaths per year. The continuing emergence of multidrug-resistant Plasmodium falciparum drives the ongoing need for the development of new and effective antimalarial drugs. Our previous work has explored the preliminary structural optimization of 4(1H)-quinolone ester derivatives, a new series of antimalarials related to the endochins.

View Article and Find Full Text PDF

Pentamethyl-6-chromanol (PMCol), a chromanol-type compound related to vitamin E, was proposed as an anticancer agent with activity against androgen-dependent cancers. In repeat dose-toxicity studies in rats and dogs, PMCol caused hepatotoxicity, nephrotoxicity, and hematological effects. The objectives of this study were to determine the mechanisms of the observed toxicity and identify sensitive early markers of target organ injury by integrating classical toxicology, toxicogenomics, and metabolomic approaches.

View Article and Find Full Text PDF

Arylimidamides (AIAs) represent a new class of molecules that exhibit potent antileishmanial activity (50% inhibitory concentration [IC(50)], <1 microM) against both Leishmania donovani axenic amastigotes and intracellular Leishmania, the causative agent for human visceral leishmaniasis (VL). A systematic lead discovery program was employed to characterize in vitro and in vivo antileishmanial activities, pharmacokinetics, mutagenicities, and toxicities of two novel AIAs, DB745 and DB766. They were exceptionally active (IC(50) < or = 0.

View Article and Find Full Text PDF

The purpose of this study was to investigate the sulfation of resveratrol (3,5,4'-trihydroxystilbene) and its potential to exhibit drug-drug interactions via sulfation. The possible interaction of resveratrol with 17beta-estradiol (E2), a major estrogen hormone and prototypic substrate for sulfate conjugation, was studied. Resveratrol and E2 are both known to undergo sulfate conjugation catalyzed by human sulfotransferases (SULTs).

View Article and Find Full Text PDF

Previously, we showed that Src tyrosine kinases are activated early in the development of human colon cancer and are suppressed as intestinal cells differentiate. We identified RACK1 as an endogenous substrate, binding partner and inhibitor of Src. Here we show (by overexpressing RACK1, depleting Src or RACK1 and utilizing cell-permeable peptides that perturb RACK1's interaction with Src) that RACK1 regulates growth of colon cells by suppressing Src activity at G(1) and mitotic checkpoints, and consequently delaying cell cycle progression.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are implicated in amphetamine-initiated neurodegeneration, but the mechanism is unclear. Here, we show that amphetamines are bioactivated by CNS prostaglandin H synthase (PHS) to free radical intermediates that cause ROS formation and neurodegenerative oxidative DNA damage. In vitro incubations of purified PHS-1 with 3,4-methylenedioxyamphetamine (MDA) and methamphetamine (METH) demonstrated PHS-catalyzed time- and concentration-dependent formation of an amphetamine carbon- and/or nitrogen-centered free radical intermediate, and stereoselective oxidative DNA damage, evidenced by 8-oxo-2'-deoxyguanosine (8-oxo-dG) formation.

View Article and Find Full Text PDF

Developmental pathologies may result from endogenous or xenobiotic-enhanced formation of reactive oxygen species (ROS), which oxidatively damage cellular macromolecules and/or alter signal transduction. This minireview focuses upon several model drugs (phenytoin, thalidomide, methamphetamine), environmental chemicals (benzo[a]pyrene) and gamma irradiation to examine this hypothesis in vivo and in embryo culture using mouse, rat and rabbit models. Embryonic prostaglandin H synthases (PHSs) and lipoxygenases bioactivate xenobiotics to free radical intermediates that initiate ROS formation, resulting in oxidation of proteins, lipids and DNA.

View Article and Find Full Text PDF

The developmental role of prostaglandin H synthase-2 (PHS-2), which converts xenobiotics such as benzo[a]pyrene (B[a]P) to toxic free radical intermediates, is poorly understood. In this study, we determined the embryonic expression and teratological relevance of PHS-2 in pregnant CD-1 and B6/129S7 PHS-2 knockout mice. Wild-type (+/+) B6/129S7 dams given B[a]P on gestational day (GD) 10 had three times more fetal malformations than did +/- PHS-2-deficient dams (P<0.

View Article and Find Full Text PDF

The sedative drug thalidomide ([+]-alpha-phthalimidoglutarimide), once abandoned for causing birth defects in humans, has found new therapeutic license in leprosy and other diseases, with renewed teratological consequences. Although the mechanism of teratogenesis and determinants of risk remain unclear, related teratogenic xenobiotics are bioactivated by embryonic prostaglandin H synthase (PHS) to a free-radical intermediates that produce reactive oxygen species (ROS), which cause oxidative damage to DNA and other cellular macromolecules. Similarly, thalidomide is bioactivated by horseradish peroxidase, and oxidizes DNA and glutathione, indicating free radical-mediated oxidative stress.

View Article and Find Full Text PDF

Phenytoin and related xenobiotics can be bioactivated by embryonic prostaglandin H synthase (PHS) to a teratogenic free radical intermediate. The mechanism of free radical formation was evaluated using photolytic oxidation with sodium persulfate and by EPR spectrometry. Characterization of the products by mass spectrometry suggested that phenytoin photolyzes to a nitrogen-centered radical that rapidly undergoes ring opening to form a carbon-centered radical.

View Article and Find Full Text PDF