Staphylococcus aureus is a leading cause of nosocomial implant-associated infections, causing significant morbidity and mortality, underscoring the need for rapid, non-invasive, and cost-effective diagnostics. Here, we optimise the synthesis of renal-clearable gold nanoclusters (AuNCs) for enhanced catalytic activity with the aim of developing a sensitive colourimetric diagnostic for bacterial infection. All-atom molecular dynamics (MD) simulations confirm the stability of glutathione-coated AuNCs and surface access for peroxidase-like activity in complex physiological environments.
View Article and Find Full Text PDFSelf-adaptive thermoregulation, the mechanism living organisms use to balance their temperature, holds great promise for decarbonizing cooling and heating processes. This functionality can be effectively emulated by engineering the thermal emissivity of materials to adapt to background temperature variations. Yet, solutions that marry large emissivity switching ( ) with scalability, cost-effectiveness, and design freedom are still lacking.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) is a promising technique for the detection of biomarkers, but it can struggle to quantify multiple analytes in complex fluids. This study combines electrochemical SERS (E-SERS) and machine learning for the quantitative multiplexed detection of uric acid (UA) and creatinine (CRN). Using classical polydisperse Ag nanoparticles (NPs) made by scalable synthesis, we achieved quantitative multiplexing with low limits of detection (LoDs) and high prediction accuracy, comparable to those made by sophisticated approaches.
View Article and Find Full Text PDFAqueous rechargeable zinc-ion batteries (ZIBs) are increasingly recognized as promising energy storage systems for mini-grid and mini-off-grid applications due to their advantageous characteristics such as high safety, affordability, and considerable theoretical capacity. However, the long-term cycling performance of ZIBs is hampered by challenges including the uncontrolled dendrite formation, the passivation, and the occurrence of the hydrogen evolution reaction (HER) on the Zn anode. In this study, enhancing ZIB performance by implementing oxide material coatings on Zn metal, serving as a physical barrier at the electrode-electrolyte interfaces to mitigate dendrite growth and suppress the HER is concentrated.
View Article and Find Full Text PDFThe downsizing of microscale energy storage devices is crucial for powering modern on-chip technologies by miniaturizing electronic components. Developing high-performance microscale energy devices, such as micro-supercapacitors, is essential through processing smart electrodes for on-chip structures. In this context, we introduce porous gold (Au) interdigitated electrodes (IDEs) as current collectors for micro-supercapacitors, using polyaniline as the active material.
View Article and Find Full Text PDFThe downsizing of microscale energy storage devices plays a crucial role in powering modern emerging devices. Therefore, the scientific focus on developing high-performance microdevices, balancing energy density and power density, becomes essential. In this context, we explore an advanced Microplotter technique to fabricate hybrid planar Zn-ion microcapacitors (ZIMCs) that exhibit dual charge storage characteristics, with an electrical double layer capacitor type activated carbon anode and a battery type VO (B) cathode, aiming to achieve energy density surpassing supercapacitors and power density exceeding batteries.
View Article and Find Full Text PDFAqueous zinc (Zn) iodine (I) batteries have emerged as viable alternatives to conventional metal-ion batteries. However, undesirable Zn deposition and irreversible iodine conversion during cycling have impeded their progress. To overcome these concerns, we report a dynamical interface design by cation chemistry that improves the reversibility of Zn deposition and four-electron iodine conversion.
View Article and Find Full Text PDFHerein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO.
View Article and Find Full Text PDFSeed quality traits of oilseed rape, (), exhibit quantitative inheritance determined by its genetic makeup and the environment via the mediation of a complex genetic architecture of hundreds to thousands of genes. Thus, instead of single gene analysis, network-based systems genomics and genetics approaches that combine genotype, phenotype, and molecular phenotypes offer a promising alternative to uncover this complex genetic architecture. In the current study, systems genetics approaches were used to explore the genetic regulation of lignin traits in seeds.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2024
Reconstruction-engineered electrocatalysts with enriched high active Ni species for urea oxidation reaction (UOR) have recently become promising candidates for energy conversion. However, to inhibit the over-oxidation of urea brought by the high valence state of Ni, tremendous efforts are devoted to obtaining low-value products of nitrogen gas to avoid toxic nitrite formation, undesirably causing inefficient utilization of the nitrogen cycle. Herein, we proposed a mediation engineering strategy to significantly boost high-value nitrite formation to help close a loop for the employment of a nitrogen economy.
View Article and Find Full Text PDFAerosol-assisted chemical vapor deposition (AACVD) was used to deposit highly transparent and conductive titanium or fluorine-doped and titanium-fluorine co-doped ZnO thin films on glass substrate at 450 °C. All films were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), UV-Vis spectroscopy, scanning electron spectroscopy (SEM), and four-point probe. The films were 600-680 nm thick, crystalline, and highly transparent (80-87 %).
View Article and Find Full Text PDFSmart robotic devices remotely powered by magnetic field have emerged as versatile tools for wide biomedical applications. Soft magnetic elastomer (ME) composite membranes with high flexibility and responsiveness are frequently incorporated to enable local actuation for wireless sensing or cargo delivery. However, the fabrication of thin ME membranes with good control in geometry and uniformity remains challenging, as well as the optimization of their actuating performances under low fields (milli-Tesla).
View Article and Find Full Text PDFZinc-iodine batteries (ZIBs) are promising candidates for ecofriendly, safe, and low-cost energy storage systems, but polyiodide shuttling and the complex cathode fabrication procedures have severely hindered their broader commercial usage. Herein, a protocol is developed using phospholipid-like oleylamine molecules for scalable production of Langmuir-Blodgett films, which allows the facile preparation of ZIB cathodes in less than 1 min. The resulting inhomogeneous cathode allows for the continuous conversion of iodine.
View Article and Find Full Text PDFSuperhydrophobic surfaces have been studied extensively over the past 25 years. However, many industries interested in the application of hydrophobic properties are yet to find a suitable solution to their needs. This paper looks at the rapid functionalization of nanoparticles and the fabrication of superhydrophobic surfaces with contact angles > 170°.
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) have experienced a rapid surge in popularity, as evident from the extensive research with over 30 000 articles published in the past 5 years. Previous studies on AZIBs have showcased impressive long-cycle stability at high current densities, achieving thousands or tens of thousands of cycles. However, the practical stability of AZIBs at low current densities (<1C) is restricted to merely 50-100 cycles due to intensified cathode dissolution.
View Article and Find Full Text PDFZinc metal is a promising candidate for anodes in zinc-ion batteries (ZIBs), but its widespread implementation is hindered by dendrite growth in aqueous electrolytes. Dendrites lead to undesirable side reactions, such as hydrogen evolution, passivation, and corrosion, causing reduced capacity during prolonged cycling. In this study, an approach is explored to address this challenge by directly growing 1D zinc oxide (ZnO) nanorods (NRs) and 2D ZnO nanoflakes (NFs) on Zn anodes, forming artificial layers to enhance ZIB performance.
View Article and Find Full Text PDFSolar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device.
View Article and Find Full Text PDFHerein, ammonium fluoride is reported as an additive within 1 M ZnSO aqueous electrolyte to improve zinc anodes. The as-formed electrostatic shielding layer and ZnF-rich solid-state interphase layer can jointly inhibit side reactions and dendrite growth. Consequently, symmetric Zn‖Zn cells, asymmetric Zn‖Cu cells and Zn‖MnO cells with the additives present dramatically enhanced performance in comparison to the ones with pure ZnSO electrolyte counterparts.
View Article and Find Full Text PDFVernalization requirement is an integral component of flowering in winter-type plants. The availability of winter ecotypes among Camelina species facilitated the mapping of quantitative trait loci (QTL) for vernalization requirement in Camelina sativa. An inter and intraspecific crossing scheme between related Camelina species, where one spring and two different sources of winter-type habit were used, resulted in the development of two segregating populations.
View Article and Find Full Text PDFThe high-density amorphous phases (HDAs) of bimetallic zeolitic imidazolate frameworks (Zn/Co-ZIF-4) were prepared. The temperature dependence of the isobaric heat capacity () of ZIF-4 HDAs was measured to determine the glass transition temperature () of HDAs. The non-linearly decreases with the molar ratio , where is Co/(Co + Zn), indicating the presence of a mixed-metal node effect.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
October 2023
Photo-induced enhanced Raman spectroscopy (PIERS) has emerged as a highly sensitive surface-enhanced Raman spectroscopy (SERS) technique for the detection of ultra-low concentrations of organic molecules. The PIERS mechanism has been largely attributed to UV-induced formation of surface oxygen vacancies (V) in semiconductor materials, although alternative interpretations have been suggested. Very recently, PIERS has been proposed as a surface probe for photocatalytic materials, following V formation and healing kinetics.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2023
For zinc-ion batteries (ZIBs), the non-uniform Zn plating/stripping results in a high polarization and low Coulombic efficiency (CE), hindering the large-scale application of ZIBs. Here, inspired by biomass seaweed plants, an anionic polyelectrolyte alginate acid (SA) was used to initiate the in situ formation of the high-performance solid electrolyte interphase (SEI) layer on the Zn anode. Attribute to the anionic groups of -COO , the affinity of Zn ions to alginate acid induces a well-aligned accelerating channel for uniform plating.
View Article and Find Full Text PDF