Antibiograms have been used during outbreak investigations for decades as a surrogate for genetic relatedness of Methicillin-resistant (MRSA). In this study, we evaluate the accuracy of antibiograms in detecting transmission, using genomic epidemiology as the reference standard. We analysed epidemiological and genomic data from 1,465 patients and 1,465 MRSA isolates collected at a single clinical microbiology laboratory in the United Kingdom over a one-year period.
View Article and Find Full Text PDFThe emergence of mobile colistin resistance gene has attracted global attention. The prevalence of -positive (MCRPEC) in humans largely decreased following the ban of colistin as an animal growth promoter in China. However, the prevalence of MCRPEC in the hospital environment and the relationship between disinfectants and remain unclear.
View Article and Find Full Text PDFStaphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution.
View Article and Find Full Text PDFThe dynamics of the genetic diversity of pathogens, including the emergence of lineages with increased fitness, is a foundational concept of disease ecology with key public-health implications. However, the identification of such lineages and estimation of associated fitness remain challenging, and is rarely done outside densely sampled systems. Here we present phylowave, a scalable approach that summarizes changes in population composition in phylogenetic trees, enabling the automatic detection of lineages based on shared fitness and evolutionary relationships.
View Article and Find Full Text PDFThe Enterobacteriaceae are a scientifically and medically important clade of bacteria, containing the model organism , as well as major human pathogens including and . Essential gene sets have been determined for several members of the Enterobacteriaceae, with the Keio single-gene deletion library often regarded as a gold standard. However, it remains unclear how gene essentiality varies between related strains and species.
View Article and Find Full Text PDFMelioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B.
View Article and Find Full Text PDFThe major human bacterial pathogen causes multidrug-resistant infections in people with underlying immunodeficiencies or structural lung diseases such as cystic fibrosis (CF). We show that a few environmental isolates, driven by horizontal gene acquisition, have become dominant epidemic clones that have sequentially emerged and spread through global transmission networks over the past 200 years. These clones demonstrate varying intrinsic propensities for infecting CF or non-CF individuals (linked to specific transcriptional changes enabling survival within macrophages); have undergone multiple rounds of convergent, host-specific adaptation; and have eventually lost their ability to transmit between different patient groups.
View Article and Find Full Text PDFIncX3 plasmids carrying the New Delhi metallo-β-lactamase-encoding gene, bla, are rapidly spreading globally in both humans and animals. Given that carbapenems are listed on the WHO AWaRe watch group and are prohibited for use in animals, the drivers for the successful dissemination of Carbapenem-Resistant Enterobacterales (CRE) carrying bla-IncX3 plasmids still remain unknown. We observe that E.
View Article and Find Full Text PDFRecombination of short DNA fragments via horizontal gene transfer (HGT) can introduce beneficial alleles, create genomic disharmony through negative epistasis, and create adaptive gene combinations through positive epistasis. For non-core (accessory) genes, the negative epistatic cost is likely to be minimal because the incoming genes have not co-evolved with the recipient genome and are frequently observed as tightly linked cassettes with major effects. By contrast, interspecific recombination in the core genome is expected to be rare because disruptive allelic replacement is likely to introduce negative epistasis.
View Article and Find Full Text PDFis increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of to the human lung is which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived mutations on the physiology and virulence of , mutations were introduced in the isogenic background of ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection.
View Article and Find Full Text PDFGenomic epidemiology enhances the ability to detect and refute methicillin-resistant (MRSA) outbreaks in healthcare settings, but its routine introduction requires further evidence of benefits for patients and resource utilization. We performed a 12 month prospective study at Cambridge University Hospitals NHS Foundation Trust in the UK to capture its impact on hospital infection prevention and control (IPC) decisions. MRSA-positive samples were identified via the hospital microbiology laboratory between November 2018 and November 2019.
View Article and Find Full Text PDFCreating a successful small molecule drug is a challenging multiparameter optimization problem in an effectively infinite space of possible molecules. Generative models have emerged as powerful tools for traversing data manifolds composed of images, sounds, and text and offer an opportunity to dramatically improve the drug discovery and design process. To create generative optimization methods that are more useful than brute-force molecular generation and filtering via virtual screening, we propose that four integrated features are necessary: large, quantitative data sets of molecular structure and activity, an invertible vector representation of realistic accessible molecules, smooth and differentiable regressors that quantify uncertainty, and algorithms to simultaneously optimize properties of interest.
View Article and Find Full Text PDFObjective: Selective decontamination of the digestive tract (SDD) is a well-studied but hotly contested medical intervention of enhanced infection control. Here, we aim to characterise the changes to the microbiome and antimicrobial resistance (AMR) gene profiles in critically ill children treated with SDD-enhanced infection control compared with conventional infection control.
Design: We conducted shotgun metagenomic microbiome and resistome analysis on serial oropharyngeal and faecal samples collected from critically ill, mechanically ventilated patients in a pilot multicentre cluster randomised trial of SDD.
Background: DNA sequencing could become an alternative to in vitro antibiotic susceptibility testing (AST) methods for determining antibiotic resistance by detecting genetic determinants associated with decreased antibiotic susceptibility. Here, we aimed to assess and improve the accuracy of antibiotic resistance determination from Enterococcus faecium genomes for diagnosis and surveillance purposes.
Methods: In this retrospective diagnostic accuracy study, we first conducted a literature search in PubMed on Jan 14, 2021, to compile a catalogue of genes and mutations predictive of antibiotic resistance in E faecium.
Background: The effect of antibiotic usage on the success of multidrug-resistant (MDR) clones in a population remains unclear. With this genomics-based molecular epidemiology study, we aimed to investigate the contribution of antibiotic use to Escherichia coli clone success, relative to intra-strain competition for colonisation and infection.
Methods: We sequenced all the available E coli bloodstream infection isolates provided by the British Society for Antimicrobial Chemotherapy (BSAC) from 2012 to 2017 (n=718) and combined these with published data from the UK (2001-11; n=1090) and Norway (2002-17; n=3254).
Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium . However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conducted a comprehensive genomic analysis of 1,391 isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date.
View Article and Find Full Text PDFStreptococcus agalactiae (Group B Streptococcus; GBS) is a common cause of sepsis in neonates. Previous work detected GBS DNA in the placenta in ~5% of women before the onset of labour, but the clinical significance of this finding is unknown. Here we re-analysed this dataset as a case control study of neonatal unit (NNU) admission.
View Article and Find Full Text PDFBackground: Melioidosis is a frequently fatal disease caused by an environmental bacterium . The disease is prevalent in northeast Thailand, particularly among rice field farmers who are at risk of bacterial exposure through contact with contaminated soil and water. However, not all exposure results in disease, and infection can manifest diverse outcomes.
View Article and Find Full Text PDFAs observed in cancers, individual mutagens and defects in DNA repair create distinctive mutational signatures that combine to form context-specific spectra within cells. We reasoned that similar processes must occur in bacterial lineages, potentially allowing decomposition analysis to detect both disruption of DNA repair processes and exposure to niche-specific mutagens. Here we reconstruct mutational spectra for 84 clades from 31 diverse bacterial species and find distinct mutational patterns.
View Article and Find Full Text PDFDifficult-to-treat pulmonary infections caused by nontuberculous mycobacteria of the group have been steadily increasing in the USA and globally. Owing to the relatively recent recognition of as a human pathogen, basic and translational research to address critical gaps in diagnosis, treatment, and prevention of diseases caused by this microorganism has been lagging behind that of the better-known mycobacterial pathogen, . To begin unraveling the molecular mechanisms of pathogenicity of , we here focus on the study of a two-component regulator known as PhoPR which we found to be under strong evolutionary pressure during human lung infection.
View Article and Find Full Text PDF16S rRNA gene sequencing is widely used to characterize human and environmental microbiomes. Sequencing at scale facilitates better powered studies but is limited by cost and time. We identified two areas in our 16S rRNA gene library preparation protocol where modifications could provide efficiency gains, including (1) pooling of multiple PCR amplifications per sample to reduce PCR drift and (2) manual preparation of mastermix to reduce liquid handling.
View Article and Find Full Text PDFConcerns exist that widespread use of antiseptic or disinfectant biocides could contribute to the emergence and spread of multidrug-resistant bacteria. To investigate this, we performed transposon-directed insertion-site sequencing (TraDIS) on the multidrug-resistant pathogen, Acinetobacter baumannii, exposed to a panel of ten structurally diverse and clinically relevant biocides. Multiple gene targets encoding cell envelope or cytoplasmic proteins involved in processes including fatty acid biogenesis, multidrug efflux, the tricarboxylic acid cycle, cell respiration and cell division, were identified to have effects on bacterial fitness upon biocide exposure, suggesting that these compounds may have intracellular targets in addition to their known effects on the cell envelope.
View Article and Find Full Text PDFWhile symbiotic relationships between invertebrates and bacteria have been extensively described, studies of microbial communities inhabiting parasitic worms remain scarce. Exploring the microbiota associated with helminths responsible for major infectious diseases will inform on parasite biology, host-pathogen interactions, and disease pathophysiology. We investigated the presence of microorganisms inhabiting tissues of the human parasite Schistosoma mansoni.
View Article and Find Full Text PDF