Womens Health Rep (New Rochelle)
March 2024
Background: Trauma exposure is a risk factor for substance use disorders (SUD) among women. This study explores written content from an expressive writing (EW) intervention conducted within a residential SUD program to examine themes across trauma experiences and characterize their deep insight into such experiences.
Materials And Methods: This qualitative study is a secondary data analysis of written content of the first writing session from women ( = 44) randomized to an EW condition while in residential SUD treatment.
Voltage-gated and mechanically-gated ion channels are distinct classes of membrane proteins that conduct ions across gated pores and are turned on by electrical or mechanical stimuli, respectively. Here, we describe an Hv channel (a.k.
View Article and Find Full Text PDFThe human voltage-gated proton channel Hv1 is a drug target for cancer, ischemic stroke, and neuroinflammation. It resides on the plasma membrane and endocytic compartments of a variety of cell types, where it mediates outward proton movement and regulates the activity of NOX enzymes. Its voltage-sensing domain (VSD) contains a gated and proton-selective conduction pathway, which can be blocked by aromatic guanidine derivatives such as 2-guanidinobenzimidazole (2GBI).
View Article and Find Full Text PDFThe voltage-gated Hv1 proton channel is a ubiquitous membrane protein that has roles in a variety of cellular processes, including proton extrusion, pH regulation, production of reactive oxygen species, proliferation of cancer cells, and increased brain damage during ischemic stroke. A crystal structure of an Hv1 construct in a putative closed state has been reported, and structural models for the channel open state have been proposed, but a complete characterization of the Hv1 conformational dynamics under an applied membrane potential has been elusive. We report structural models of the Hv1 voltage-sensing domain (VSD), both in a hyperpolarized state and a depolarized state resulting from voltage-dependent conformational changes during a 10-μs-timescale atomistic molecular dynamics simulation in an explicit membrane environment.
View Article and Find Full Text PDF