Diamondoids are a class of aliphatic molecules with cage-like structures and serve as a bridge between small hydrocarbons and large nanodiamond macromolecules. Because their optical properties are highly dependent on the size, shape, and functionalization of the carbon network, they have many applications in the fields of nanotechnology and spectroscopy. Still, much remains to understand the geometric and electronic effects induced by functionalization of diamondoids.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
The source of water (HO) and hydroxyl radicals (OH), identified on the lunar surface, represents a fundamental, unsolved puzzle. The interaction of solar-wind protons with silicates and oxides has been proposed as a key mechanism, but laboratory experiments yield conflicting results that suggest that proton implantation alone is insufficient to generate and liberate water. Here, we demonstrate in laboratory simulation experiments combined with imaging studies that water can be efficiently generated and released through rapid energetic heating like micrometeorite impacts into anhydrous silicates implanted with solar-wind protons.
View Article and Find Full Text PDF(D-)Methanol-nitrogen monoxide (CHOH/CDOH-NO) ices were exposed to ionizing radiation to facilitate the eventual determination of the CHNO potential energy surface (PES) in the condensed phase. Reaction intermediates and products were monitored via infrared spectroscopy (FTIR) and photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS) during the irradiation and temperature controlled desorption (TPD) phase, respectively. Distinct photoionization energies were utilized to discriminate the isomer(s) formed in these processes.
View Article and Find Full Text PDF