The degradation of glycosaminoglycans (GAGs) by intestinal bacteria is critical for their colonization in the human gut and the health of the host. Both colonic and have been reported to degrade GAGs; however, the enzymatic details of the latter remain largely unknown. Our bioinformatic analyses of fecal revealed that their genomes, especially Hungatella hathewayi strains, are an abundant source of putative GAG-specific catabolic enzymes.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs) are consistently present in the human colon in free forms and as part of proteoglycans. Their utilization is critical for the colonization and proliferation of gut bacteria and also the health of hosts. Hence, it is essential to determine the GAG-degrading members of the gut bacteria and their enzymatic machinery for GAG depolymerization.
View Article and Find Full Text PDFPhytoestrogens are a class of plant produced polyphenolic compounds with diphenolic structure, which is similar to 17β-estradiol. These phytoestrogens preferentially bind to estrogen receptors, however, with weak affinity. Recently, many studies have found that these phytoestrogens can be transformed by gut microbiota through novel enzymatic reactions into metabolites with altered bioactivity.
View Article and Find Full Text PDFCurcumin has been widely investigated for its myriad cellular effects resulting in reduced proliferation of various eukaryotic cells including cancer cells and the human malaria parasite Plasmodium falciparum. Studies with human cancer cell lines HT-29, Caco-2, and MCF-7 suggest that curcumin can bind to tubulin and induce alterations in microtubule structure. Based on this finding, we investigated whether curcumin has any effect on P.
View Article and Find Full Text PDF