Objectives: To evaluate an artificial intelligence (AI) model in predicting soft tissue and alveolar bone changes following orthodontic treatment and compare the predictive performance of the AI model with conventional prediction models.
Materials And Methods: A total of 1774 lateral cephalograms of 887 adult patients who had undergone orthodontic treatment were collected. Patients who had orthognathic surgery were excluded.
The study introduces a novel maleamate-based prosthetic group specifically designed for efficient, site-specific radioiodination of biomolecules that contain or are modified with cysteine residues. This strategy is a compelling alternative to the conventional maleimide-based approach, demonstrating outstanding attributes such as high radiochemical yield, rapid reaction kinetics, applicability in aqueous media at neutral pH, and exceptional stability under a competitive environment.
View Article and Find Full Text PDFOrthod Craniofac Res
December 2024
Objectives: Since developing AI procedures demands significant computing resources and time, the implementation of a careful experimental design is essential. The purpose of this study was to investigate factors influencing the development of AI in orthodontics.
Materials And Methods: A total of 162 AI models were developed, with various combinations of sample sizes (170, 340, 679), input variables (40, 80, 160), output variables (38, 76, 154), training sessions (100, 500, 1000), and computer specifications (new vs.
Radiolabeling of biomolecules and cells with radiolabeled prosthetic groups has significant implications for nuclear medicine, imaging, and radiotherapy. Achieving site-specific and controlled incorporation of radiolabeled prostheses under mild reaction conditions is crucial for minimizing the impact on the bioactivity of the radiolabeled compounds. The targeting of natural and abundant amino acids during radiolabeling of biomolecules often results in nonspecific and uncontrolled modifications.
View Article and Find Full Text PDFACS Med Chem Lett
March 2024
The burgeoning interest in developing boron neutron capture therapy (BNCT) tracers and their accompanying diagnostics for the treatment of recalcitrant tumors has prompted this investigation. Our study aims to devise a tumor treatment strategy utilizing BNCT to target the αβ integrin. To this end, we propose a pioneering boron-infused cyclic Arg-Gly-Asp (RGD) peptide, cRGD(d-BPA)K, designed as an efficacious BNCT tracer.
View Article and Find Full Text PDF4-Nonylphenol (4NP) is concerning due to its growing presence and endocrine-disrupting nature, raising concerns about its impact on health. In this study I-labeled 4NP was synthesized for tracing. Positron emission tomography imaging and biodistribution studies showed significant accumulation in various tissues after oral or intraperitoneal administration, emphasizing its intricate distribution and potential long-term effects, crucial for future risk assessments.
View Article and Find Full Text PDFOwing to their theranostic properties, cerium oxide (CeO) nanoparticles have attracted considerable attention for their key applications in nanomedicine. In this study, ultrasmall CeO nanoparticles (particle diameter = 1-3 nm) as X-ray contrast agents with an antioxidant effect were investigated for the first time. The nanoparticles were coated with hydrophilic and biocompatible poly(acrylic acid) (PAA) and poly(acrylic acid--maleic acid) (PAAMA) to ensure satisfactory colloidal stability in aqueous media and low cellular toxicity.
View Article and Find Full Text PDFObjectives: The skeletal class III phenotype is a heterogeneous condition in populations of different ethnicities. This study aimed to analyse the joint and ethnicity-specific clustering of morphological features in skeletal class III patients of Asian and European origins.
Materials And Methods: This cross-sectional study involved South Korean and Spanish participants who fulfilled the cephalometric, clinical, and ethnic-related selection criteria.
Objectives: To compare facial growth prediction models based on the partial least squares and artificial intelligence (AI).
Materials And Methods: Serial longitudinal lateral cephalograms from 410 patients who had not undergone orthodontic treatment but had taken serial cephalograms were collected from January 2002 to December 2022. On every image, 46 skeletal and 32 soft-tissue landmarks were identified manually.
The aim of this study is to evaluate a radioactive metal complex platform for brain tumor targeting. Herein, we introduce a new porphyrin derivative, 5,10,15,20-(tetra-,-dimethyl-4-aminophenyl)porphyrin (TDAP), in which four ,-dimethyl-4--phenylenediamine (DMPD) moieties are conjugated to the porphyrin labeled with the radiometal Cu. DMPD affected the pharmacokinetics of porphyrin in terms of retention time in vivo and tumor-targeting ability relative to those of unmodified porphyrin.
View Article and Find Full Text PDFBackground: Not all non-small cell lung cancer (NSCLC) patients will benefit from immune checkpoint therapy and use of these medications carry serious autoimmune adverse effects. Therefore, biomarkers are needed to better identify patients who will benefit from its use. Here, the correlation of overall survival (OS) with baseline and early treatment period serum biomarker responses was evaluated in patients with NSCLC undergoing immunotherapy.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2023
Ultrasmall platinum nanoparticles (Pt-NPs) grafted with three types of hydrophilic and biocompatible polymers, i.e., poly(acrylic acid), poly(acrylic acid-co-maleic acid), and poly(methyl vinyl ether-alt-maleic acid) were synthesized using a one-pot polyol method.
View Article and Find Full Text PDFConductivity tensor imaging (CTI) using MRI is an advanced method that can non-invasively measure the electrical properties of living tissues. The contrast of CTI is based on underlying hypothesis about the proportionality between the mobility and diffusivity of ions and water molecules inside tissues. The experimental validation of CTI in both and settings is required as a reliable tool to assess tissue conditions.
View Article and Find Full Text PDFIonizing radiation delivers sufficient energy inside the human body to create ions, which kills cancerous tissues either by damaging the DNA directly or by creating charged particles that can damage the DNA. Recent magnetic resonance (MR)-based conductivity imaging shows higher sensitivity than other MR techniques for evaluating the responses of normal tissues immediately after irradiation. However, it is still necessary to verify the responses of cancer tissues to irradiation by conductivity imaging for it to become a reliable tool in evaluating therapeutic effects in clinical practice.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2022
In this study, we designed, synthesized, and evaluated gadolinium compounds conjugated with flavonoids as potential theranostic agents for the treatment of inflammation. These novel theranostic agents combine a molecular imaging agent and one of three flavonoids (galangin, chrysin, and 7-hydroxyflavone) as anti-inflammatory drugs as a single integrated platform. Using these agents, MR imaging showed contrast enhancement (>10 in CNR) at inflamed sites in an animal inflammation model, and subsequent MR imaging used to monitor the therapeutic efficacy of these integrated agents revealed changes in inflamed regions.
View Article and Find Full Text PDFEarly diagnosis of radiation-induced pulmonary fibrosis (RIPF) in lung cancer patients after radiation therapy is important. A gastrin-releasing peptide receptor (GRPR) mediates the inflammation and fibrosis after irradiation in mice lungs. Previously, our group synthesized a GRPR-targeted positron emission tomography (PET) imaging probe, [Cu]Cu-NODAGA-galacto-bombesin (BBN), an analogue peptide of GRP.
View Article and Find Full Text PDFPac Symp Biocomput
December 2022
Background: Adverse drug reactions (ADRs) are unintended negative drug-induced responses. Determining the association between drugs and ADRs is crucial, and several methods have been proposed to demonstrate this association. This systematic review aimed to examine the analytical tools by considering original articles that utilized statistical and machine learning methods for detecting ADRs.
View Article and Find Full Text PDFWater proton spin relaxivities, colloidal stability, and biocompatibility of nanoparticle magnetic resonance imaging (MRI) contrast agents depend on surface-coating ligands. In this study, hydrophilic and biocompatible polyethylenimines (PEIs) of different sizes (M = 1200 and 60,000 amu) were used as surface-coating ligands for ultrasmall holmium oxide (HoO) nanoparticles. The synthesized PEI1200- and PEI60000-coated ultrasmall HoO nanoparticles, with an average particle diameter of 2.
View Article and Find Full Text PDF