Publications by authors named "Park F Cho-Park"

Chimeric antigen receptor (CAR) T cells have not induced meaningful clinical responses in solid tumors. Loss of T cell stemness, poor expansion capacity, and exhaustion during prolonged tumor antigen exposure are major causes of CAR T cell therapeutic resistance. Single-cell RNA-sequencing analysis of CAR T cells from a first-in-human trial in metastatic prostate cancer identified two independently validated cell states associated with antitumor potency or lack of efficacy.

View Article and Find Full Text PDF

Cerium oxide nanoparticles (CeONP), having potent antioxidant properties, are highly promising nanomaterials for treatment of diseases in which oxidative stress from excessive reactive oxygen species (ROS) plays a critical role in the pathogenesis and progression. However, most previously reported CeONP formulations were not efficiently cleared from the body, precluding their clinical translation. Herein, we report ultrasmall CeONP that can mitigate activation of macrophages and subsequent acute inflammation.

View Article and Find Full Text PDF

Protein degradation by the ubiquitin-proteasome system is central to cell homeostasis and survival. Defects in this process are associated with diseases such as cancer and neurodegenerative disorders. The 26S proteasome is a large protease complex that degrades ubiquitinated proteins.

View Article and Find Full Text PDF

The X-ray structure of the C-terminal region of human eukaryotic translation initiation factor 4G (eIF4G) has been determined at 2.2 A resolution, revealing two atypical HEAT-repeat domains. eIF4G recruits various translation factors and the 40S ribosomal subunit to the mRNA 5' end.

View Article and Find Full Text PDF

In mammals, it is well documented that observable circadian rhythms are controlled by a central oscillator that is organized in transcriptional and translational feedback loops involving several clock genes. Although recent studies have demonstrated that clock genes oscillate in many peripheral tissues, their characteristics in the human immune system remain unknown. The present study investigates whether circadian clock genes function in human peripheral blood mononuclear cells.

View Article and Find Full Text PDF