Publications by authors named "Parivash Ranjbar"

The perceptual integration of 50- and 250-Hz, 500-ms vibrotactile and auditory tones was studied in detection experiments as a function of the relative phase (0°, 72°, 144°, 216°, and 288°) of the tone pulses. Vibrotactile stimuli were delivered through a single-channel vibrator to the left middle fingertip and auditory stimuli were presented diotically through headphones in a background of 50 dB SPL broadband noise. The observers were four adults with normal hearing.

View Article and Find Full Text PDF

Human locomotion typically creates noise, a possible consequence of which is the masking of sound signals originating in the surroundings. When walking side by side, people often subconsciously synchronize their steps. The neurophysiological and evolutionary background of this behavior is unclear.

View Article and Find Full Text PDF

Monitor is a portable vibrotactile aid to improve the ability of people with severe hearing impairment or deafblindness to detect, identify, and recognize the direction of sound-producing events. It transforms and adapts sounds to the frequency sensitivity range of the skin. The aid was evaluated in the field.

View Article and Find Full Text PDF

This study compared three different signal-processing principles (eight basic algorithms)-transposing, modulating, and filtering-to find the principle(s)/algorithm(s) that resulted in the best tactile identification of environmental sounds. The subjects were 19 volunteers (9 female/10 male) who were between 18 and 50 years old and profoundly hearing impaired. We processed sounds produced by 45 representative environmental events with the different algorithms and presented them to subjects as tactile stimuli using a wide-band stationary vibrator.

View Article and Find Full Text PDF

The goal of the present study was to compare six transposing signal-processing algorithms based on different principles (Fourier-based and modulation based), and to choose the algorithm that best enables identification of environmental sounds, i.e. improves the ability to monitor events in the surroundings.

View Article and Find Full Text PDF