Publications by authors named "Parisot M"

Adenosine deaminase acting on RNA 1 (ADAR1) is the principal enzyme for the adenosine-to-inosine RNA editing that prevents the aberrant activation of cytosolic nucleic acid sensors by endogenous double stranded RNAs and the activation of interferon-stimulated genes. In mice, the conditional neural crest deletion of reduces the survival of melanocytes and alters the differentiation of Schwann cells that fail to myelinate nerve fibers in the peripheral nervous system. These myelination defects are partially rescued upon the concomitant removal of the Mda5 antiviral dsRNA sensor in vitro, suggesting implication of the Mda5/Mavs pathway and downstream effectors in the genesis of mutant phenotypes.

View Article and Find Full Text PDF
Article Synopsis
  • Autoimmune lymphoproliferative syndrome (ALPS) is a condition where the body's immune system doesn't work properly, causing problems like too many immune cells and a higher chance of cancer.
  • This research focused on understanding a specific gene called CASP10 to see if it affects ALPS, looking at different changes in that gene in some patients.
  • The results showed that changes in the CASP10 gene didn't really affect how a process called apoptosis (cell death) works in people with ALPS, suggesting that CASP10 isn't important for causing this condition.
View Article and Find Full Text PDF
Article Synopsis
  • This study examines how barrel aging affects the oxidative stability of Chardonnay Champagne base wines before secondary fermentation, known as "prise de mousse."
  • After aging for one year in new oak barrels, the wines displayed enhanced oxidative stability and distinct chemical changes based on the aging period and vintage year.
  • The findings contribute to a better understanding of the antioxidant properties of white wines and how different factors like vintage and barrel aging influence the aging potential of these Champagne base wines.
View Article and Find Full Text PDF

Gain-of-function mutations in stimulator of interferon gene 1 (STING1) result in STING-associated vasculopathy with onset in infancy (SAVI), a severe autoinflammatory disease. Although elevated type I interferon (IFN) production is thought to be the leading cause of the symptoms observed in patients, STING can induce a set of pathways, which have roles in the onset and severity of SAVI and remain to be elucidated. To this end, we performed a multi-omics comparative analysis of peripheral blood mononuclear cells (PBMCs) and plasma from SAVI patients and healthy controls, combined with a dataset of healthy PBMCs treated with IFN-β.

View Article and Find Full Text PDF

Renal epithelial cells are subjected to fluid shear stress of urine flow. Several cellular structures act as mechanosensors-the primary cilium, microvilli and cell adhesion complexes-that directly relay signals to the cytoskeleton to regulate various processes including cell differentiation and renal cell functions. Nephronophthisis (NPH) is an autosomal recessive tubulointerstitial nephropathy leading to end-stage kidney failure before adulthood.

View Article and Find Full Text PDF

Waardenburg syndrome (WS) is characterized by the association of sensorineural hearing loss and pigmentation abnormalities. Among the four types, WS Type 2 (WS2) is the only one without a remarkable distinguishing feature. Here, we report a patient initially diagnosed with WS2 who exhibits a 446 kb mosaic duplication in chromosome 22q13.

View Article and Find Full Text PDF

Loss of NBEAL2 function leads to grey platelet syndrome (GPS), a bleeding disorder characterized by macro-thrombocytopenia and α-granule-deficient platelets. A proportion of patients with GPS develop autoimmunity through an unknown mechanism, which might be related to the proteins NBEAL2 interacts with, specifically in immune cells. Here we show a comprehensive interactome of NBEAL2 in primary T cells, based on mass spectrometry identification of altogether 74 protein association partners.

View Article and Find Full Text PDF

X-linked Alport syndrome (XLAS) is an inherited kidney disease caused exclusively by pathogenic variants in the COL4A5 gene. In 10-20% of cases, DNA sequencing of COL4A5 exons or flanking regions cannot identify molecular causes. Here, our objective was to use a transcriptomic approach to identify causative events in a group of 19 patients with XLAS without identified mutation by Alport gene panel sequencing.

View Article and Find Full Text PDF

Congenital hydrocephalus is a common condition caused by the accumulation of cerebrospinal fluid in the ventricular system. Four major genes are currently known to be causally involved in hydrocephalus, either isolated or as a common clinical feature: L1CAM, AP1S2, MPDZ and CCDC88C. Here, we report 3 cases from 2 families with congenital hydrocephalus due to bi-allelic variations in CRB2, a gene previously reported to cause nephrotic syndrome, variably associated with hydrocephalus.

View Article and Find Full Text PDF

We present the case of a female patient with a heterozygous somatic BLNK mutation, a T-cell LGL (large granular lymphocyte) leukemia, and multiple autoimmune diseases. Although this mutation seems uncommon especially in this kind of clinical observation, it could represent a new mechanism for autoimmune diseases associated with LGL leukemia. The patient developed several autoimmune diseases: pure red blood cell apalsia, thyroiditis, oophoritis, and alopecia areata.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists discovered that changes in a gene called UNC45A can lead to a health problem that includes diarrhea, deafness, and fragile bones.
  • They studied 6 patients and found that their UNC45A gene wasn't working properly, causing issues in their intestines.
  • The research showed that UNC45A helps other proteins, like myosin VB, work correctly, and when this gene is missing, it can lead to serious problems in how the intestines are formed and function.
View Article and Find Full Text PDF

In diabetic patients, dyslipidemia frequently contributes to organ damage such as diabetic kidney disease (DKD). Dyslipidemia is associated with both excessive deposition of triacylglycerol (TAG) in lipid droplets (LDs) and lipotoxicity. Yet, it is unclear how these two effects correlate with each other in the kidney and how they are influenced by dietary patterns.

View Article and Find Full Text PDF

Mastocytosis is a heterogeneous disease characterized by an abnormal accumulation of mast cells (MCs) in 1 or several organs. Although a somatic KIT D816V mutation is detected in ∼85% of patients, attempts to demonstrate its oncogenic effect alone have repeatedly failed, suggesting that additional pathways are involved in MC transformation. From 3 children presenting with both Greig cephalopolysyndactyly syndrome (GCPS, Mendelian Inheritance in Man [175700]) and congenital mastocytosis, we demonstrated the involvement of the hedgehog (Hh) pathway in mastocytosis.

View Article and Find Full Text PDF

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children is generally milder than in adults, but a proportion of cases result in hyperinflammatory conditions often including myocarditis.

Methods: To better understand these cases, we applied a multiparametric approach to the study of blood cells of 56 children hospitalized with suspicion of SARS-CoV-2 infection. Plasma cytokine and chemokine levels and blood cellular composition were measured, alongside gene expression at the bulk and single-cell levels.

View Article and Find Full Text PDF

Indirect somatic genetic rescue (SGR) of a germline mutation is thought to be rare in inherited Mendelian disorders. Here, we establish that acquired mutations in the EIF6 gene are a frequent mechanism of SGR in Shwachman-Diamond syndrome (SDS), a leukemia predisposition disorder caused by a germline defect in ribosome assembly. Biallelic mutations in the SBDS or EFL1 genes in SDS impair release of the anti-association factor eIF6 from the 60S ribosomal subunit, a key step in the translational activation of ribosomes.

View Article and Find Full Text PDF

Activated PI3-kinase-δ syndrome 2 (APDS2) is caused by autosomal dominant mutations in the gene encoding the p85α, p55α, and p50α regulatory subunits. Most diagnosed APDS2 patients carry mutations affecting either the splice donor or splice acceptor sites of exon 11 of the gene responsible for an alternative splice product and a shortened protein. The clinical presentation of APDS2 patients is highly variable, ranging from mild to profound combined immunodeficiency features as massive lymphoproliferation, increased susceptibility to bacterial and viral infections, bronchiectasis, autoimmune manifestations, and occurrence of cancer.

View Article and Find Full Text PDF

Patients with sickle cell disease often undergo frequent blood transfusions. This increases their exposure to red blood cell alloantigens of donor units, thus making it more likely that they produce alloantibodies. This cross-sectional study aimed to describe the prevalence of allo-immunization in patients with sickle cell disease who were monitored at Cayenne Hospital in 2016.

View Article and Find Full Text PDF

Several studies have reported WDR73 mutations to be causative of Galloway-Mowat syndrome, a rare disorder characterised by the association of neurological defects and renal-glomerular disease. In this study, we demonstrate interaction of WDR73 with the INTS9 and INTS11 components of Integrator, a large multiprotein complex with various roles in RNA metabolism and transcriptional control. We implicate WDR73 in two Integrator-regulated cellular pathways; namely, the processing of uridylate-rich small nuclear RNAs (UsnRNA), and mediating the transcriptional response to epidermal growth factor stimulation.

View Article and Find Full Text PDF

Purpose: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts.

Methods: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers.

View Article and Find Full Text PDF

The neural crest gives rise to numerous cell types, dysfunction of which contributes to many disorders. Here, we report that adenosine deaminase acting on RNA (ADAR1), responsible for adenosine-to-inosine editing of RNA, is required for regulating the development of two neural crest derivatives: melanocytes and Schwann cells. Neural crest specific conditional deletion of Adar1 in mice leads to global depigmentation and absence of myelin from peripheral nerves, resulting from alterations in melanocyte survival and differentiation of Schwann cells, respectively.

View Article and Find Full Text PDF
Article Synopsis
  • N-threonyl-carbamoylation of adenosine 37 in ANN-type tRNAs is crucial for accurate protein translation, utilizing the YRDC and OSGEP enzymes.
  • Mutations in the KEOPS complex subunits have been linked to Galloway-Mowat syndrome, with YRDC mutations causing severe symptoms and GON7 mutations resulting in milder forms.
  • The crystal structure of a GON7 subcomplex reveals that GON7 becomes partially structured when interacting with LAGE3, indicating its role in stabilizing the KEOPS complex.
View Article and Find Full Text PDF