The synthesis of nanoparticles (NPs) using environmentally friendly methods has garnered significant attention in response to concerns about the environmental impact of various nanomaterial manufacturing techniques. To address this issue, natural resources like extracts from plants, fungi, and bacteria are employed as a green alternative for nanoparticle synthesis. Plant extracts, which contain active components such as terpenoids, alkaloids, phenols, tannins, and vitamins, operate as coating and reducing agents.
View Article and Find Full Text PDFAtopic dermatitis (AD) is a common disease-causing skin inflammation, redness, and irritation, which can eventually result in infection that drastically impacts patient quality of life. Resveratrol (Res) is a natural phytochemical famed for its excellent anti-inflammatory and antioxidant activities. However, it is poorly bioavailable.
View Article and Find Full Text PDFModular tissue engineering (mTE) strategies aim to build three-dimensional tissue analoguesby the sapient combination of cells, micro-scaffolds (-scaffs) and bioreactors. The translation of these newly engineered tissues into current clinical approaches is, among other things, dependent on implant-to-host microvasculature integration, a critical issue for cells and tissue survival. In this work we reported, for the first time, a computer-aided modular approach suitable to build fully vascularized hybrid (biological/synthetic) constructs (bio-constructs) with micro-metric size scale control of blood vessels growth and orientation.
View Article and Find Full Text PDFEdible polymers such as polysaccharides, proteins, and lipids are biodegradable and biocompatible materials applied as a thin layer to the surface of food or inside the package. They enhance food quality by prolonging its shelf-life and avoiding the deterioration phenomena caused by oxidation, humidity, and microbial activity. In order to improve the biopolymer performance, antimicrobial agents and plasticizers are also included in the formulation of the main compounds utilized for edible coating packages.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2021
Porous microscaffolds (μ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) μ-scaffs with a bioinspired trabecular structure that supported adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical μ-scaffs with controllable diameter and full pore interconnectivity.
View Article and Find Full Text PDFIn tissue engineering, the use of supercritical CO foaming is a valuable and widespread choice to design and fabricate porous bioactive scaffolds for cells culture and new tissue formation in three dimensions. Nevertheless, the control of scaffold pores size, shape and spatial distribution with foaming technique remains, to date, a critical limiting step. To mimic the biomimetic structure of tissues like bone, blood vessels and nerve tissues, we developed a novel supercritical CO-foaming approach for the preparation of dual-scale, dual-shape porous polymeric scaffolds with pre-defined arrays of micro-channels within a foamed porosity.
View Article and Find Full Text PDFWound healing can lead to complex clinical problems, hence finding an efficient approach to enhance the healing process is necessary. An ideal wound dressing should treat wounds at reasonable costs, with minimal inconveniences for the patient. Chitosan is one of the most investigated biopolymers for wound healing applications due to its biocompatibility, biodegradability, non-toxicity, and antimicrobial activity.
View Article and Find Full Text PDFEngineering three-dimensional (3D) scaffolds for functional tissue and organ regeneration is a major challenge of the tissue engineering (TE) community. Great progress has been made in developing scaffolds to support cells in 3D, and to date, several implantable scaffolds are available for treating damaged and dysfunctional tissues, such as bone, osteochondral, cardiac and nerve. However, recapitulating the complex extracellular matrix (ECM) functions of native tissues is far from being achieved in synthetic scaffolds.
View Article and Find Full Text PDF